Brain Circuits Underlying Narcolepsy

Adamantidis, AR, Zhang, F, Aravanis, AM, Deisseroth, K, de Lecea, L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–4.
Google Scholar | Crossref | Medline Anaclet, C, Pedersen, NP, Ferrari, LL, Venner, A, Bass, CE, Arrigoni, E, and others. 2015. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:8744.
Google Scholar | Crossref | Medline | ISI Apergis-Schoute, J, Iordanidou, P, Faure, C, Jego, S, Schone, C, Aitta-Aho, T, and others. 2015. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35(14):5435–41.
Google Scholar | Crossref | Medline Arrigoni, E, Chen, MC, Fuller, PM. 2016. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 594(19):5391–414.
Google Scholar | Crossref Arrigoni, E, Mochizuki, T, Scammell, TE. 2010. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 198(3):223–35.
Google Scholar | Crossref | Medline Ballinger, EC, Ananth, M, Talmage, DA, Role, LW. 2016. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91(6):1199–218.
Google Scholar | Crossref | Medline Bernard-Valnet, R, Yshii, L, Queriault, C, Nguyen, XH, Arthaud, S, Rodrigues, M, and others. 2016. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A 113(39):10956–61.
Google Scholar | Crossref | Medline Blouin, AM, Fried, I, Wilson, CL, Staba, RJ, Behnke, EJ, Lam, HA, and others. 2013. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun 4:1547.
Google Scholar | Crossref | Medline Brooks, PL, Peever, JH. 2012. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci 32(29):9785–95.
Google Scholar | Crossref Burdakov, D, Karnani, MM. 2020. Ultra-sparse connectivity within the lateral hypothalamus. Curr Biol 30(20):4063–70.e2.
Google Scholar | Crossref | Medline Burgess, CR, Oishi, Y, Mochizuki, T, Peever, JH, Scammell, TE. 2013. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci 33(23):9734–42.
Google Scholar | Crossref Capelli, P, Pivetta, C, Soledad Esposito, M, Arber, S. 2017. Locomotor speed control circuits in the caudal brainstem. Nature 551(7680):373–7.
Google Scholar | Crossref | Medline Carter, ME, Brill, J, Bonnavion, P, Huguenard, JR, Huerta, R, de Lecea, L. 2012. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109(39):E2635–44.
Google Scholar | Crossref Carter, ME, Yizhar, O, Chikahisa, S, Nguyen, H, Adamantidis, A, Nishino, S, and others. 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13(12):1526–33.
Google Scholar | Crossref Chemelli, RM, Willie, JT, Sinton, CM, Elmquist, JK, Scammell, T, Lee, C, and others. 1999. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–51.
Google Scholar | Crossref | Medline Chen, MC, Vetrivelan, R, Guo, CN, Chang, C, Fuller, PM, Lu, J. 2017. Ventral medullary control of rapid eye movement sleep and atonia. Exp Neurol 290:53–62.
Google Scholar | Crossref | Medline Chou, TC, Lee, CE, Lu, J, Elmquist, JK, Hara, J, Willie, JT, and others. 2001. Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21(19):RC168.
Google Scholar | Crossref | Medline Chowdhury, S, Hung, CJ, Izawa, S, Inutsuka, A, Kawamura, M, Kawashima, T, and others. 2019. Dissociating orexin-dependent and -independent functions of orexin neurons using novel orexin-Flp knock-in mice. Elife 8:e44927.
Google Scholar | Crossref | Medline Clasadonte, J, Scemes, E, Wang, Z, Boison, D, Haydon, PG. 2017. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95(6):1365–80.e5.
Google Scholar | Crossref | Medline Cvetkovic-Lopes, V, Bayer, L, Dorsaz, S, Maret, S, Pradervand, S, Dauvilliers, Y, and others. 2010. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest 120(3):713–9.
Google Scholar | Crossref | Medline Dauvilliers, Y, Bassetti, C, Lammers, GJ, Arnulf, I, Mayer, G, Rodenbeck, A, and others. 2013. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol 12(11):1068–75.
Google Scholar | Crossref | Medline Dauvilliers, Y, Siegel, JM, Lopez, R, Torontali, ZA, Peever, JH. 2014. Cataplexy—clinical aspects, pathophysiology and management strategy. Nat Rev Neurol 10(7):386–95.
Google Scholar | Crossref | Medline de Lecea, L, Kilduff, TS, Peyron, C, Gao, X, Foye, PE, Danielson, PE, and others. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–7.
Google Scholar | Crossref | Medline Eban-Rothschild, A, Borniger, JC, Rothschild, G, Giardino, WJ, Morrow, JG, de Lecea, L. 2020. Arousal state-dependent alterations in VTA-GABAergic neuronal activity. eNeuro 7(2):ENEURO.0356-19.2020.
Google Scholar | Crossref | Medline Eban-Rothschild, A, Rothschild, G, Giardino, WJ, Jones, JR, de Lecea, L. 2016. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–66.
Google Scholar | Crossref | Medline Eggermann, E, Bayer, L, Serafin, M, Saint-Mleux, B, Bernheim, L, Machard, D, and others. 2003. The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. J Neurosci 23(5):1557–62.
Google Scholar | Crossref | Medline Feng, H, Wen, SY, Qiao, QC, Pang, YJ, Wang, SY, Li, HY, and others. 2020. Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat Commun 11(1):3661.
Google Scholar | Crossref | Medline Ferrari, LL, Park, D, Zhu, L, Palmer, MR, Broadhurst, RY, Arrigoni, E. 2018. Regulation of lateral hypothalamic orexin activity by local GABAergic neurons. J Neurosci 38(6):1588–99.
Google Scholar | Crossref Fraigne, JJ, Torontali, ZA, Snow, MB, Peever, JH. 2015. REM sleep at its core—circuits, neurotransmitters, and pathophysiology. Front Neurol 6:123.
Google Scholar | Crossref | Medline Gélineau, JBE . 1880. De la narcolepsie. Gaz Hop 53(54):626–37.
Google Scholar Gent, TC, Bandarabadi, M, Herrera, CG, Adamantidis, AR. 2018. Thalamic dual control of sleep and wakefulness. Nat Neurosci 21(7):974–84.
Google Scholar | Crossref | Medline Giaume, C, Koulakoff, A, Roux, L, Holcman, D, Rouach, N. 2010. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99.
Google Scholar | Crossref | Medline | ISI Gompf, HS, Mathai, C, Fuller, PM, Wood, DA, Pedersen, NP, Saper, CB, and others. 2010. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 30(43):14543–51.
Google Scholar | Crossref | Medline Grace, KP, Horner, RL. 2020. A focal inactivation and computational study of ventrolateral periaqueductal gray and deep mesencephalic reticular nucleus involvement in sleep state switching and bistability. eNeuro 7(6):ENEURO.0451-19.2020.
Google Scholar | Crossref | Medline Guan, JL, Uehara, K, Lu, S, Wang, QP, Funahashi, H, Sakurai, T, and others. 2002. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord 26(12):1523–32.
Google Scholar | Medline Hara, J, Beuckmann, CT, Nambu, T, Willie, JT, Chemelli, RM, Sinton, CM, and others. 2001. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–54.
Google Scholar | Crossref | Medline Hasegawa, E, Maejima, T, Yoshida, T, Masseck, OA, Herlitze, S, Yoshioka, M, and others. 2017. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A 114(17):E3526–35.
Google Scholar | Crossref Hasegawa, E, Yanagisawa, M, Sakurai, T, Mieda, M. 2014. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 124(2):604–16.
Google Scholar | Crossref Honjoh, S, Sasai, S, Schiereck, SS, Nagai, H, Tononi, G, Cirelli, C. 2018. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 9(1):2100.
Google Scholar | Crossref | Medline Hor, H, Kutalik, Z, Dauvilliers, Y, Valsesia, A, Lammers, GJ, Donjacour, CE, and others. 2010. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 42(9):786–9.
Google Scholar | Crossref | Medline Hsieh, KC, Gvilia, I, Kumar, S, Uschakov, A, McGinty, D, Alam, MN, and others. 2011. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states. Neuroscience 188:55–67.
Google Scholar | Crossref | Medline Huang, ZL, Qu, WM, Li, WD, Mochizuki, T, Eguchi, N, Watanabe, T, and others. 2001. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 98(17):9965–70.
Google Scholar | Crossref Hung, CJ, Ono, D, Kilduff, TS, Yamanaka, A. 2020. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 9:e54275.
Google Scholar | Crossref | Medline Ingiosi, AM, Hayworth, CR, Harvey, DO, Singletary, KG, Rempe, MJ, Wisor, JP, and others. 2020. A role for astroglial calcium in mammalian sleep and sleep regulation. Curr Biol 30(22):4373–83.e7.
Google Scholar | Crossref | Medline Iwasaki, K, Komiya, H, Kakizaki, M, Miyoshi, C, Abe, M, Sakimura, K, and others. 2018. Ablation of central serotonergic neurons decreased REM sleep and attenuated arousal response. Front Neurosci 12:535.
Google Scholar | Crossref | Medline Jackson, J, Karnani, MM, Zemelman, BV, Burdakov, D, Lee, AK. 2018. Inhibitory control of prefrontal cortex by the claustrum. Neuron 99(5):1029–39.e4.
Google Scholar | Crossref Jego, S, Glasgow, SD, Herrera, CG, Ekstrand, M, Reed, SJ, Boyce, R, and others. 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–43.
Google Scholar | Crossref | Medline Kaur, S, Thankachan, S, Begum, S, Liu, M, Blanco-Centurion, C, Shiromani, PJ. 2009. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One 4(7):e6346.
Google Scholar | Crossref | Medline Khanday, MA, Somarajan, BI, Mehta, R, Mallick, BN. 2016. Noradrenaline from locus coeruleus neurons acts on pedunculo-pontine neurons to prevent REM sleep and induces its loss-associated effects in rats. eNeuro 3(6):ENEURO.0108-16.2016.
Google Scholar | Crossref | Medline Kiyashchenko, LI, Mileykovskiy, BY, Maidment, N, Lam, HA, Wu, MF, John, J, and others. 2002. Release of hypocretin (orexin) during waking and sleep states. J Neurosci 22(13):5282–6.
Google Scholar | Crossref | Medline Konadhode, RR, Pelluru, D, Blanco-Centurion, C, Zayachkivsky, A, Liu, M, Uhde, T, and others. 2013. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–63.
Google Scholar | Crossref | Medline Kornum, BR, Kawashima, M, Faraco, J, Lin, L, Rico, TJ, Hesselson, S, and others. 2011. Common variants in P2RY11 are associated with narcolepsy. Nat Genet 43(1):66–71.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif