Multiple Immunofluorescence Imaging Analysis Reveals Differential Expression of Disialogangliosides GD3 and GD2 in Neuroblastomas

1. Nakagawara, A, Li, Y, Izumi, H, Muramori, K, Inada, H, Nishi, M. Neuroblastoma. Jpn J Clin Oncol. 2018; 48:214–241.
Google Scholar | Crossref | Medline2. Maris, JM, Hogarty, MD, Bagatell, R, Cohn, SL. Neuroblastoma. Lancet. 2007; 369:2106–2120.
Google Scholar | Crossref | Medline | ISI3. Shimada, H, Ambros, IM, Dehner, LP, Hata, J, Joshi, VV. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999; 86(2):364–372.
Google Scholar | Crossref | Medline | ISI4. Schmidt, M Lou, Lal, A, Seeger, RC, et al. Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children’s Cancer Group Study. J Clin Oncol. 2005; 23:6474–6480.
Google Scholar | Crossref | Medline5. Lammie, GA, Cheung, NKV, Gerald, W, Rosenblum, M, Cordon-Cardo, C. Ganglioside GD2 expression in the human nervous system and in neuroblastomas – An immunohistochemical study. Int J Oncol. 1993; 3:909–915.
Google Scholar | Medline6. Nazha, B, Inal, C, Owonikoko, TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020; 10:1–15.
Google Scholar | Crossref | Medline7. Matthay, KK, Villablanca, JG, Seeger, RC, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med. 1999; 341:1165–1173.
Google Scholar | Crossref | Medline | ISI8. Portoukalian, J, David, M‐J, Richard, M, et al. Shedding of GD2 ganglioside in patients with retinoblastoma. Int J Cancer. 1993; 53:948–951.
Google Scholar | Crossref | Medline9. Mount, CW, Majzner, RG, Sundaresh, S, et al. Potent antitumor efficacy of anti-GD2 CAR T-cells in H3K27M+ diffuse midline gliomas Christopher. Nat Med. 2018; 24:572–579.
Google Scholar | Crossref | Medline10. Dobrenkov, K, Ostrovnaya, I, Gu, J, et al. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer. 2016; 63(10):1780–1785.
Google Scholar | Crossref | Medline11. Julien, S, Bobowski, M, Steenackers, A, Le Bourhis, X, Delannoy, P. How do gangliosides regulate RTKs signaling? Cells. 2013; 2:751–767.
Google Scholar | Crossref | Medline12. Matthay, KK, Reynolds, CP, Seeger, RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group Study. J Clin Oncol. 2009; 27:1007–1013.
Google Scholar | Crossref | Medline | ISI13. Cohn, SL, Pearson, ADJ, London, WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009; 27:289–297.
Google Scholar | Crossref | Medline | ISI14. Matthay, KK, George, RE, Yu, AL. Promising therapeutic targets in neuroblastoma. Clin Cancer Res. 2012; 18:2740–2753.
Google Scholar | Crossref | Medline15. Terzic, T, Cordeau, M, Herblot, S, et al. Expression of disialoganglioside (GD2) in neuroblastic tumors: a prognostic value for patients treated with anti-GD2 immunotherapy. Pediatr Dev Pathol. 2018; 21:355–362.
Google Scholar | SAGE Journals | ISI16. Ohmi, Y, Kambe, M, Ohkawa, Y, et al. Differential roles of gangliosides in malignant properties of melanomas. PLoS One. 2018; 13:1–23.
Google Scholar | Crossref17. Iwasawa, T, Zhang, P, Ohkawa, Y, et al. Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int J Oncol. 2018; 52:1255–1266.
Google Scholar | Medline18. Webb, TJ, Li, X, Giuntoli, RL, et al. Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 2013; 72:3744–3752.
Google Scholar | Crossref19. Lee, M, Kim, KS, Fukushi, A, Kim, DH, Kim, CH, Lee, YC. Transcriptional activation of human GD3 synthase (hST8sia i) gene in curcumin-induced autophagy in A549 human lung carcinoma cells. Int J Mol Sci. 2018; 19:1–11.
Google Scholar20. Wagener, R, Röhn, G, Schillinger, G, Schröder, R, Kobbe, B, Ernestus, RI. Ganglioside profiles in human gliomas: quantification by microbore high performance liquid chromatography and correlation to histomorphology and grading. Acta Neurochir (Wien). 1999; 141:1339–1345.
Google Scholar | Crossref | Medline21. Allred, DC, Harvey, JM, Clark, GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998; 11:155–168.
Google Scholar | Medline | ISI22. Nakanishi, Y, Shimizu, T, Tsujino, I, et al. Semi-nested real-time reverse transcription polymerase chain reaction methods for the successful quantitation of cytokeratin mRNA expression levels for the subtyping of non-small-cell lung carcinoma using paraffin-embedded and microdissected lung biopsys. Acta Histochem Cytochem. 2013; 46:85–96.
Google Scholar | Crossref | Medline23. Macabeo-Ong, M, Ginzinger, DG, Dekker, N, et al. Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Mod Pathol. 2002; 15:979–987.
Google Scholar | Crossref | Medline24. Casey, DL, Cheung, NKV. Immunotherapy of pediatric solid tumors: treatments at a crossroads, with an emphasis on antibodies. Cancer Immunol Res. 2020; 8:161–166.
Google Scholar | Crossref | Medline25. Hamamura, K, Tsuji, M, Hotta, H, et al. Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem. 2011; 286:18526–18537.
Google Scholar | Crossref | Medline26. Hedberg, KM, Dellheden, B, Wikstrand, CJ, Fredman, P. Monoclonal anti-GD3 antibodies selectively inhibit the proliferation of human malignant glioma cells in vitro. Glycoconj J. 2000; 10:717–726.
Google Scholar | Crossref27. Kang, NY, Kim, CH, Kim, KS, et al. Expression of the human CMP-NeuAc:GM3 α2,8-sialyltransferase (GD3 synthase) gene through the NF-κB activation in human melanoma SK-MEL-2 cells. Biochim Biophys Acta – Gene Struct Expr. 2007; 1769:622–630.
Google Scholar | Crossref | Medline28. Sarkar, TR, Battula, VL, Werden, SJ, et al. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene. 2015; 34:2958–2967.
Google Scholar | Crossref | Medline29. Lluis, JM, Llacuna, L, von Montfort, C, et al. GD3 synthase overexpression sensitizes hepatocarcinoma cells to hypoxia and reduces tumor growth by suppressing the cSrc/NF-κb survival pathway. PLoS One. 2009; 4:e8059.
Google Scholar | Crossref | Medline30. Saqr, HE, Omran, O, Dasgupta, S, Yu, RK, Oblinger, JL, Yates, AJ. Endogenous GD3 ganglioside induces apoptosis in U-1242 MG glioma cells. J Neurochem. 2006; 96:1301–1314.
Google Scholar | Crossref | Medline31. Birks, SM, Danquah, JO, King, L, Vlasak, R, Gorecki, DC, Pilkington, GJ. Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol. 2011; 13:950–960.
Google Scholar | Crossref | Medline32. Malisan, F, Testi, R. GD3 ganglioside and apoptosis. Biochim Biophys Acta – Mol Cell Biol Lipids. 2002; 1585:179–187.
Google Scholar | Crossref33. Oblinger, JL, Pearl, DK, Boardman, CL, et al. Diagnostic and prognostic value of glycosyltransferase mRNA in glioblastoma multiforme patients. Neuropathol Appl Neurobiol. 2006; 32:410–418.
Google Scholar | Crossref | Medline34. Dippold, WG, Knuth, A, Zum Buschenfelde, KHM, Dienes, HP. Immunohistochemical localization of ganglioside GD3 in human malignant melanoma, epithelial tumors, and normal tissues. Cancer Res. 1985; 45:3699–3705.
Google Scholar | Medline35. Kushner, BH, Cheung, IY, Modak, S, Kramer, K, Ragupathi, G, Cheung, NKV. Phase I trial of a bivalent gangliosides vaccine in combination with β-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res. 2014; 20:1375–1382.
Google Scholar | Crossref | Medline36. Rossig, C, Kailayangiri, S, Jamitzky, S, Altvater, B. Carbohydrate targets for CAR T cells in solid childhood cancers. Front Oncol. 2018; 8:1–12.
Google Scholar | Crossref | Medline37. Doronin, II, Vishnyakova, PA, Kholodenko, IV, et al. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer. 2014; 14:295.
Google Scholar | Crossref | Medline38. Shibuya, H, Hamamura, K, Hotta, H, et al. Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci. 2012; 103:1656–1664.
Google Scholar | Crossref | Medline39. Ohkawa, Y, Miyazaki, S, Hamamura, K, et al . Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem. 2010; 285:27213–27223.
Google Scholar | Crossref | Medline40. Swerts, K, Ambros, PF, Brouzes, C, et al. Standardization of the immunocytochemical detection of neuroblastoma cells in bone marrow. J Histochem Cytochem. 2005; 53:1433–1440.
Google Scholar | SAGE Journals | ISI41. Beiske, K, Burchill, SA, Cheung, IY, et al , Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer. 2009; 19:1627–1637.
Google Scholar | Crossref

留言 (0)

沒有登入
gif