Dual-Task Accuracy and Response Time Index Effects of Spoken Sentence Predictability and Cognitive Load on Listening Effort

Akeroyd, M. A. (2008). Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. International journal of audiology, 47(sup2), S53–S71.
Google Scholar Alhanbali, S., Dawes, P., Lloyd, S., Munro, K. J. (2017). Self-reported listening-related effort and fatigue in hearing-impaired adults. Ear and Hearing, 38(1), e39–e48. https://doi.org/10.1097/AUD.0000000000000361
Google Scholar | Crossref | Medline Alhanbali, S., Dawes, P., Lloyd, S., Munro, K. J. (2018). Hearing handicap and speech recognition correlate with self-reported listening effort and fatigue. Ear and Hearing, 39(3), 470–474. doi: 10.1097/AUD.0000000000000515
Google Scholar | Crossref | Medline American National Standards Institute Standards. (2010). American national standard specification for audiometers. American National Standards Institute.
Google Scholar Baayen, R. H., Davidson, D. J., Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.
Google Scholar | Crossref | ISI Baddeley, A. D., Hitch, G. (1974). Working memory. In G.H. Bower (Ed.) Psychology of learning and motivation (Vol. 8, pp. 47–89). Elsevier.
Google Scholar Barr, D. J., Levy, R., Scheepers, C., Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.
Google Scholar | Crossref | ISI Bates, D., Kliegl, R., Vasishth, S., Baayen, H. (2015). Parsimonious mixed models. ArXiv Preprint ArXiv:1506.04967.
Google Scholar Bates, D., Mächler, M., Bolker, B., Walker, S. (2014). Fitting linear mixed-effects models using lme4. ArXiv Preprint ArXiv:1406.5823.
Google Scholar Bilger, R. C., Nuetzel, J. M., Rabinowitz, W. M., Rzeczkowski, C. (1984). Standardization of a test of speech perception in noise. Journal of Speech, Language, and Hearing Research, 27(1), 32–48.
Google Scholar | Crossref | ISI Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., Nieuwenhuis, S. (2010). The neural basis of the speed–accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16. https://doi.org/10.1016/j.tins.2009.09.002
Google Scholar | Crossref | Medline Braver, T. S., Gray, J. R., Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. Variation in Working Memory, 75, 106.
Google Scholar Brown, V. A., Strand, J. F. (2018). Noise increases listening effort in normal-hearing young adults, regardless of working memory capacity. Language, Cognition, and Neuroscience, 34(5), 628–640.
Google Scholar | Crossref Collins, A. M., Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407.
Google Scholar | Crossref | ISI Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786.
Google Scholar | Crossref | Medline | ISI Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.
Google Scholar | Crossref Daneman, M., Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Memory and Language, 19(4), 450.
Google Scholar Desjardins, J. L., Doherty, K. A. (2013). Age-related changes in listening effort for various types of masker noises. Ear and Hearing, 34(3), 261–272. doi: 10.1097/AUD.0b013e31826d0ba4
Google Scholar | Crossref | Medline | ISI Desjardins, J. L., Doherty, K. A. (2014). The effect of hearing aid noise reduction on listening effort in hearing-impaired adults. Ear and Hearing, 35(6), 600–610. doi: 10.1097/AUD.0000000000000028
Google Scholar | Crossref | Medline | ISI Dingemanse, J. G., Goedegebure, A. (2019). The important role of contextual information in speech perception in cochlear implant users and its consequences in speech tests. Trends in Hearing, 23, 2331216519838672. https://doi.org/10.1177/2331216519838672
Google Scholar | SAGE Journals Doherty, J. M., Belletier, C., Rhodes, S., Jaroslawska, A., Barrouillet, P., Camos, V., Cowan, N., Naveh-Benjamin, M., Logie, R. H. (2019). Dual-task costs in working memory: An adversarial collaboration. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(9), 1529.
Google Scholar | Crossref | Medline Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23.
Google Scholar | SAGE Journals | ISI Feuerstein, J. F. (1992). Monaural versus binaural hearing: Ease of listening, word recognition, and attentional effort. Ear and Hearing, 13(2), 80–86.
Google Scholar | Crossref | Medline | ISI Francis, A. L., Nusbaum, H. C. (2009). Effects of intelligibility on working memory demand for speech perception. Attention, Perception, & Psychophysics, 71(6), 1360–1374.
Google Scholar | Crossref | Medline Füllgrabe, C., Rosen, S. (2016). On the (un) importance of working memory in speech-in-noise processing for listeners with normal hearing thresholds. Frontiers in Psychology, 7, 1268. https://doi.org/10.3389/fpsyg.2016.01268
Google Scholar | Crossref | Medline | ISI Gagne, J.-P., Besser, J., Lemke, U. (2017). Behavioral assessment of listening effort using a dual-task paradigm: A review. Trends in Hearing, 21, 2331216516687287. https://doi.org/10.1177/2331216516687287
Google Scholar | SAGE Journals | ISI Hadar, B., Skrzypek, J. E., Wingfield, A., Ben-David, B. M. (2016). Working memory load affects processing time in spoken word recognition: Evidence from eye-movements. Frontiers in Neuroscience, 10, 221. https://doi.org/10.3389/fnins.2016.00221
Google Scholar | Crossref | Medline Hornsby, B. W. (2013). The effects of hearing aid use on listening effort and mental fatigue associated with sustained speech processing demands. Ear and Hearing, 34(5), 523–534.
Google Scholar | Crossref | Medline | ISI Hornsby, B. W., Kipp, A. M. (2016). Subjective ratings of fatigue and vigor in adults with hearing loss are driven by perceived hearing difficulties not degree of hearing loss. Ear and Hearing, 37(1), e1–e10. doi: 10.1097/AUD.0000000000000203
Google Scholar | Crossref | Medline Hornsby, B. W., Naylor, G., Bess, F. H. (2016). A taxonomy of fatigue concepts and their relation to hearing loss. Ear and Hearing, 37(Suppl 1), 136S. doi: 10.1097/AUD.0000000000000289
Google Scholar | Crossref | Medline Houben, R., van Doorn-Bierman, M., Dreschler, W. A. (2013). Using response time to speech as a measure for listening effort. International Journal of Audiology, 52(11), 753–761.
Google Scholar | Crossref | Medline | ISI Huettig, F. (2015). Four central questions about prediction in language processing. Brain Research, 1626, 118–135.
Google Scholar | Crossref | Medline | ISI Hunter, C. R. (2020). Tracking cognitive spare capacity during speech perception with EEG/ERP: Effects of cognitive load and sentence predictability. Ear and Hearing, 41(5), 1144–1157. doi: 10.1097/AUD.0000000000000856
Google Scholar | Crossref | Medline Hunter, C. R., Pisoni, D. B. (2018). Extrinsic cognitive load impairs spoken word recognition in high-and low-predictability sentences. Ear and Hearing, 39(2), 378–389. doi: 10.1097/AUD.0000000000000493
Google Scholar | Crossref | Medline Janse, E., Jesse, A. (2014). Working memory affects older adults’ use of context in spoken-word recognition. The Quarterly Journal of Experimental Psychology, 67(9), 1842–1862.
Google Scholar | SAGE Journals Johnson, J., Xu, J., Cox, R., Pendergraft, P. (2015). A comparison of two methods for measuring listening effort as part of an audiologic test battery. American Journal of Audiology, 24(3), 419–431.
Google Scholar | Crossref | Medline Kahneman, D. (1973). Attention and effort (Vol. 1063). Citeseer.
Google Scholar Kalikow, D. N., Stevens, K. N., Elliott, L. L. (1977). Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. The Journal of the Acoustical Society of America, 61(5), 1337–1351.
Google Scholar | Crossref | Medline | ISI Kane, M. J., Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671.
Google Scholar | Crossref | Medline | ISI Kidd, G., Mason, C. R., Richards, V. M., Gallun, F. J., Durlach, N. I. (2008). Informational masking. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.). Auditory perception of sound sources (pp. 143–189). Springer.
Google Scholar Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to syntax. Brain Research, 1146, 23–49.
Google Scholar | Crossref | Medline | ISI Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.
Google Scholar | Crossref Lewandowsky, S., Oberauer, K., Yang, L.-X., Ecker, U. K. H. (2010). A working memory test battery for MATLAB. Behavior Research Methods, 42(2), 571–585. https://doi.org/10.3758/BRM.42.2.571
Google Scholar | Crossref | Medline Luce, P. A., Feustel, T. C., Pisoni, D. B. (1983). Capacity demands in short-term memory for synthetic and natural speech. Human Factors, 25(1), 17–32.
Google Scholar | SAGE Journals | ISI Mattys, S. L., Barden, K., Samuel, A. G. (2014). Extrinsic cognitive load impairs low-level speech perception. Psychonomic Bulletin & Review, 21(3), 748–754.
Google Scholar | Crossref | Medline Mattys, S. L., Brooks, J., Cooke, M. (2009). Recognizing speech under a processing load: Dissociating energetic from informational factors. Cognitive Psychology, 59(3), 203–243.
Google Scholar | Crossref | Medline Mattys, S. L., Davis, M. H., Bradlow, A. R., Scott, S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27(7–8), 953–978.
Google Scholar | Crossref Mattys, S. L., Palmer, S. D. (2015). Divided attention disrupts perceptual encoding during speech recognition. The Journal of the Acoustical Society of America, 137(3), 1464–1472.
Google Scholar | Crossref | Medline Mattys, S. L., Wiget, L. (2011). Effects of cognitive load on speech recognition. Journal of Memory and Language, 65(2), 145–160.
Google Scholar | Crossref McGarrigle, R., Munro, K. J., Dawes, P., Stewart, A. J., Moore, D. R., Barry, J. G., Amitay, S. (2014). Listening effort and fatigue: What exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘white paper’. International Journal of Audiology, 53, 433–445.
Google Scholar | Crossref | Medline | ISI Meister, H., Rählmann, S., Lemke, U., Besser, J. (2018). Verbal response times as a potential indicator of cognitive load during conventional speech audiometry with matrix sentences. Trends in Hearing, 22, 2331216518793255. https://doi.org/10.1177/2331216518793255
Google Scholar | SAGE Journals Miller, A. E., Watson, J. M., Strayer, D. L. (2012). Individual differences in working memory capacity predict action monitoring and the error-related negativity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 757.
Google Scholar | Crossref | Medline Morey, C. C., Cowan, N. (2004). When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin & Review, 11(2), 296–301.
Google Scholar |

留言 (0)

沒有登入
gif