Apoptotic Effects of a Thioether Analog of Vitamin K3 in a Human Leukemia Cell Line

1. Markovits, J, Wang, Z, Carr, BI, et al. Differential effects of two growth inhibitory K vitamin analogs on cell cycle regulation proteins in human hepatoma cells. Life Sci. 2003;72(24):2769-2784. doi:10.1016/s0024-3205(03)00188-7.
Google Scholar | Crossref | Medline2. Diaz de Barboza, G, Guizzardi, S, Moine, L, Tolosa de Talamoni, N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol. 2017;23(16):2841-2853. doi:10.3748/wjg.v23.i16.2841.
Google Scholar | Crossref | Medline3. Chlebowski, RT, Dietrich, M, Akman, S, Block, JB. Vitamin K3 inhibition of malignant murine cell growth and human tumor colony formation. Canc Treat Rep. 1985;69(5):527-532.
Google Scholar | Medline4. Su, WC, Sun, TP, Wu, FY. The in vitro and in vivo cytotoxicity of menadione (vitamin K3) against rat transplantable hepatoma induced by 3’-methyl-4-dimethyl-aminoazobenzene. Gaoxiong yi xue ke xue za zhi. 1991;7(9):454-459.
Google Scholar | Medline5. Wu, FY, Chang, NT, Chen, WJ, Juan, CC. Vitamin K3-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cells. Oncogene. 1993;8(8):2237-2244.
Google Scholar | Medline6. Nakayama, T, Asami, S, Ono, S-I, et al. Effect of cell differentiation for neuroblastoma by vitamin k analogs. Jpn J Clin Oncol. 2009;39(4):251-259. doi:10.1093/jjco/hyp011.
Google Scholar | Crossref | Medline7. Bhatnagar, A, Liu, SQ, Petrash, JM, Srivastava, SK. Mechanism of inhibition of aldose reductase by menadione (vitamin K3). Mol Pharmacol. 1992;42(5):917-921.
Google Scholar | Medline8. Chai, YC, Hendrich, S, Thomas, JA. Protein S-thiolation in hepatocytes stimulated by t-butyl hydroperoxide, menadione, and neutrophils. Arch Biochem Biophys. 1994;310(1):264-272. doi:10.1006/abbi.1994.1166.
Google Scholar | Crossref | Medline9. Juan, CC, Wu, FYH. Vitamin K3 inhibits growth of human hepatoma hepG2 cells by decreasing activities of both p34cdc2 kinase and phosphatase. Biochem Biophys Res Commun. 1993;190(3):907-913. doi:10.1006/bbrc.1993.1135.
Google Scholar | Crossref | Medline10. Lim, D, Morgan, RJ, Akman, S, et al. Phase I trial of menadiol diphosphate (vitamin K3) in advanced malignancy. Invest New Drugs. 2005;23(3):235-239. doi:10.1007/s10637-005-6731-2.
Google Scholar | Crossref | Medline11. Nutter, LM, Ngo, EO, Fisher, GR, Gutierrez, PL. DNA strand scission and free radical production in menadione-treated cells. Correlation with cytotoxicity and role of NADPH quinone acceptor oxidoreductase. J Biol Chem. 1992;267(4):2474-2479.
Google Scholar | Crossref | Medline12. Ngo, EO, Sun, TP, Chang, JY, et al. Menadione-induced DNA damage in a human tumor cell line. Biochem Pharmacol. 1991;24(2):1961-1968. doi:10.1016/0006-2952(91)90596-w.
Google Scholar | Crossref13. Nishikawa, Y, Wang, Z, Kerns, J, Wilcox, CS, Carr, BI. Inhibition of hepatoma cell growth in vitro by arylating and non-arylating K vitamin analogs. J Biol Chem. 1999;274(49):34803-34810. doi:10.1074/jbc.274.49.34803.
Google Scholar | Crossref | Medline14. Laux, I, Nel, A. Evidence that oxidative stress-induced apoptosis by menadione involves fas-dependent and fas-independent pathways. Clin Immunol. 2001;101:335-344. doi:10.1006/clim.2001.5129.
Google Scholar | Crossref | Medline15. Sata, N, Klonowski-Stumpe, H, Han, B, Haussinger, D, Niederau, C. Menadione induces both necrosis and apoptosis in rat pancreatic acinar AR4-2J cells. Free Radic Biol Med. 1997;23(6):844-850. doi:10.1016/s0891-5849(97)00064-6.
Google Scholar | Crossref | Medline16. Caricchio, R, Kovalenko, D, Kaufmann, WK, Cohen, PL. Apoptosis provoked by the oxidative stress inducer menadione (Vitamin K3) is mediated by the Fas/Fas ligand system. Clin Immunol. 1999;93(1):65-74. doi:10.1006/clim.1999.4757.
Google Scholar | Crossref | Medline17. Semkova, S, Zhelev, Z, Miller, T, et al. Menadione/ascorbate induces overproduction of mitochondrial superoxide and impairs mitochondrial function in cancer: Comparative study on cancer and normal cells of the same origin. Anticancer Res. 2020;40(4):1963-1972. doi:10.21873/anticanres.14151.
Google Scholar | Crossref | Medline18. Wellington, KW, Hlatshwayo, V, Kolesnikova, NI, Saha, ST, Kaur, M, Motadi, LR. Anticancer activities of vitamin K3 analogues. Invest N Drugs. 2020;38(2):378-391. doi:10.1007/s10637-019-00855-8.
Google Scholar | Crossref | Medline19. Hetts, SW . To die or not to die. J Am Med Assoc. 1998;279:300-307. doi:10.1001/jama.279.4.300.
Google Scholar | Crossref | Medline | ISI20. Nakaya, K . Basic studies for the development of anticancer, antidementia, and taste modifier drugs. Yakugaku Zasshi. 2004;124(7):371-396. doi:10.1248/yakushi.124.371.
Google Scholar | Crossref | Medline21. Scott, GK, Atsriku, C, Kaminker, P, et al. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation. Mol Pharmacol. 2005;68:606-615. doi:10.1124/mol.105.013474.
Google Scholar | Crossref | Medline22. Chiou, T, Chu, S-T, Tzeng, W-F. Protection of cells from menadione-induced apoptosis by inhibition of lipid peroxidation. Toxicology. 2003;191:77-88. doi:10.1016/s0300-483x(03)00189-6.
Google Scholar | Crossref | Medline | ISI23. Czaja, M, Liu, H, Wang, Y. Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology. 2003;37(6):1405-1413. doi:10.1053/jhep.2003.50233.
Google Scholar | Crossref | Medline24. Kar, S, Adachi, T, Carr, BI. EGFR-independent activation of ERK1/2 mediates growth inhibition by a PTPase antagonizing K-vitamin analog. J Cell Physiol. 2002;190(3):356-364. doi:10.1002/jcp.10063.
Google Scholar | Crossref | Medline25. Wang, Z, Nishikawa, Y, Wang, M, Carr, BI. Induction of apoptosis via mitogen-activated protein kinase pathway by a K vitamin analog in rat hepatocytes. J Hepatol. 2002;36(1):85-92. doi:10.1016/s0168-8278(01)00230-6.
Google Scholar | Crossref | Medline26. Osada, S, Carr, BI. Mechanism of novel vitamin K analog induced growth inhibition in human hepatoma cell line. J Hepatol. 2001;34(5):676-682. doi:10.1016/s0168-8278(00)00102-1.
Google Scholar | Crossref | Medline27. Degterev, A, Yuan, J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol. 2008;9(5):378-390. doi:10.1038/nrm2393.
Google Scholar | Crossref | Medline28. Fuchs, Y, Steller, H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742-758. doi:10.1016/j.cell.2011.10.033.
Google Scholar | Crossref | Medline | ISI29. Galluzzi, L, Vitale, I, Aaronson, SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486-541. doi:10.1038/s41418-017-0012-4.2018
Google Scholar | Crossref | Medline30. Mosmann, T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4.
Google Scholar | Crossref | Medline | ISI31. Tada, H, Shiho, O, Kuroshima, K-I, Koyama, M, Tsukamoto, K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986;93(2):157-165. doi:10.1016/0022-1759(86)90183-3.
Google Scholar | Crossref | Medline32. Cossarizza, A, Baccaranicontri, M, Kalashnikova, G, Franceschi, C. A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine Iodide (JC-1). Biochem Biophys Res Commun. 1993;197(1):40-45. doi:10.1006/bbrc.1993.2438.
Google Scholar | Crossref | Medline | ISI33. Brasford, MM . A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254.
Google Scholar | Crossref | Medline34. Jeon, SH, Piao, YJ, Choi, KJ, et al. Prednisolone suppresses cyclosporin A-induced apoptosis but not cell cycle arrest in MDCK cells. Arch Biochem Biophys. 2005;435(2):382-392. doi:10.1016/j.abb.2005.01.003.
Google Scholar | Crossref | Medline35. Desole, M, Sciola, L, Delogu, MR, Sircana, S, Migheli, R, Miele, E. Role of oxidative stress in the manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells. Neurochem Int. 1997;31(2):169-176. doi:10.1016/s0197-0186(96)00146-5.
Google Scholar | Crossref | Medline36. Vermes, I, Haanen, C, Reutelingsperger, C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1-2):167-190. doi:10.1016/s0022-1759(00)00233-7.
Google Scholar | Crossref | Medline37. Kroemer, G, Petit, P, Zamzami, N, Vayssière, JL, Mignotte, B. The biochemistry of programmed cell death. Faseb J. 1995;9(13):1277-1287. doi:10.1096/fasebj.9.13.75570171995.
Google Scholar | Crossref | Medline38. Cominacini, L, Pasini, AF, Garbin, U, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J Biol Chem. 2000;275(17):12633-12638. doi:10.1074/jbc.275.17.12633.
Google Scholar | Crossref | Medline39. Tsujioka, T, Miura, Y, Otsuki, T, et al. The mechanism of vitamin K2-induced apoptosis of myeloma cells. Haematologica. 2006;91(5):613-619.
Google Scholar | Medline40. Cho, S-G, Choi, E-J. Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol. 2002;35(1):24-27. doi:10.5483/bmbrep.2002.35.1.024.
Google Scholar | Crossref | Medline41. Kim, HJ, Kang, SK, Mun, JY, Chun, YJ, Choi, KH, Kim, MY. Involvement of Akt in mitochondria-dependent apoptosis induced by a cdc25 phosphatase inhibitor naphthoquinone analog. FEBS (Fed Eur Biochem Soc) Lett. 2003;555(2):217-222. doi:10.1016/s0014-5793(03)01238-9.
Google Scholar | Crossref | Medline42. Ohashi, E, Miyajima, N, Nakagawa, T, et al. Retinoids induce growth inhibition and apoptosis in mast cell tumor cell lines. J Vet Med Sci. 2006;68(8):797-802. doi:10.1292/jvms.68.797.
Google Scholar | Crossref | Medline43. Lehmann, S, Paul, C, Törmä, H. Retinoid receptor expression and its correlation to retinoid sensitivity in non-M3 acute myeloid leukemia blast cells. Clin Cancer Res. 2001;7(2):367-373.
Google Scholar | Medline

留言 (0)

沒有登入
gif