Do Room Acoustics Affect the Amplitude of Sound-Field Auditory Steady-State Responses?

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Google Scholar | Crossref | ISI ANSI S3.1. (2003). American National Standard Methods for Maximum permissible ambient noise levels for audiometric test rooms (Rev. ed.)(ANSI S3. 1-1999).
Google Scholar ANSI S3.5. (1997). American National Standard Method for calculation of the speech intelligibility index.
Google Scholar Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Google Scholar | Crossref | ISI Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. Journal of Neuroscience, 35(5), 2161–2172. https://doi.org/10.1523/jneurosci.3915-14.2015
Google Scholar | Crossref | Medline | ISI Boettcher, F. A., Poth, E. A., Mills, J. H., Dubno, J. R. (2001). The amplitude-modulation following response in young and aged human subjects. Hearing Research, 153(1–2), 32–42. https://doi.org/10.1016/s0378-5955(00)00255-0
Google Scholar | Crossref | Medline Bradley, J. S., Reich, R. D., Norcross, S. G. (1999). On the combined effects of signal-to-noise ratio and room acoustics on speech intelligibility. The Journal of the Acoustical Society of America, 106(4), 1820–1828. https://doi.org/10.1121/1.427932
Google Scholar | Crossref | Medline British Society of Audiology. (2019). Practice guidance: The acoustics of sound field audiometry in clinical audiological applications. https://www.thebsa.org.uk/wp-content/uploads/2019/04/OD104-79-Acoustics-of-Sound-Field-Audiometry-in-Clinical-Audiological-Applications-FINAL-Feb-2019.pdf
Google Scholar Cebulla, M., Stürzebecher, E., Elberling, C. (2006). Objective detection of auditory steady-state responses: Comparison of one-sample and q-sample tests. Journal of the American Academy of Audiology, 17(2), 93–103. https://doi.org/10.3766/jaaa.17.2.3
Google Scholar | Crossref | Medline Damarla, V. K., Manjula, P. (2007). Application of ASSR in the hearing aid selection process. Australian and New Zealand Journal of Audiology, 29(2), 89–97. https://doi.org/10.1375/audi.29.2.89
Google Scholar | Crossref Dimitrijevic, A., John, M. S., van Roon, P., Picton, T. W. (2001). Human auditory steady-state responses to tones independently modulated in both frequency and amplitude. Ear and Hearing, 22(2), 100–111. https://doi.org/10.1097/00003446-200104000-00003
Google Scholar | Crossref | Medline Dobie, R. A., Wilson, M. J. (1996). A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. The Journal of the Acoustical Society of America, 100(4), 2236–2246. https://doi.org/10.1121/1.417933
Google Scholar | Crossref | Medline Elberling, C., Don, M. (2010). A direct approach for the design of chirp stimuli used for the recording of auditory brainstem responses. The Journal of the Acoustical Society of America, 128(5), 2955–2964. https://doi.org/10.1121/1.3489111
Google Scholar | Crossref | Medline Frank, T., Williams, D. L. (1994). Ambient noise-levels in industrial audiometric test rooms. American Industrial Hygiene Association Journal, 55(5), 433–437. https://doi.org/10.1080/15428119491018871
Google Scholar | Crossref | Medline Health Technical Memorandum 2045 . (1996). Acoustics – audiology. NHS Estates.
Google Scholar Hernandez-Perez, H., Torres-Fortuny, A. (2013). Auditory steady state response in sound field. International Journal of Audiology, 52(2), 139–143. https://doi.org/10.3109/14992027.2012.727103
Google Scholar | Crossref | Medline Houtgast, T., Steeneken, H. J. (1985). A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. The Journal of the Acoustical Society of America, 77(3), 1069–1077. https://doi.org/10.1121/1.392224
Google Scholar | Crossref | ISI Houtgast, T., Steeneken, H. J., Plomp, R. (1980). Predicting speech intelligibility in rooms from the modulation transfer function. I. General room acoustics. Acta Acustica United With Acustica, 46(1), 60–72.
Google Scholar IEC 268-13. (1985). Sound system equipment-Part 13: Listening tests on loudspeakers. International Electrotechnical Commission.
Google Scholar ISO 3382-1. (2009). Acoustics—Measurement of room acoustic parameters—Part 1: Performance spaces. International Organization for Standardization, Geneva, Switzerland.
Google Scholar ISO 8253-2. (2009). Acoustics-Audiometric test methods—Part 2. Sound field audiometry with pure-tone and narrow-band test signals. International Organization for Standardization, Geneva, Switzerland.
Google Scholar Jacobsen, F., Juhl, P. M. (2013). Fundamentals of general linear acoustics. John Wiley & Sons.
Google Scholar Johannesma, P. I. (1972). The pre-response stimulus ensemble of neurons in the cochlear nucleus. In Symposium on Hearing Theory (pp. 58–69). Eindhoven, Holland: Institute for Perception Research.
Google Scholar John, M. S., Dimitrijevic, A., van Roon, P., Picton, T. W. (2001). Multiple auditory steady-state responses to AM and FM stimuli. Audiology and Neurotology, 6(1), 12–27. https://doi.org/10.1159/000046805
Google Scholar | Crossref | Medline Kuwada, S., Batra, R., Maher, V. L. (1986). Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hearing Research, 21(2), 179–192. https://doi.org/10.1016/0378-5955(86)90038-9
Google Scholar | Crossref | Medline Laugesen, S., Rieck, J. E., Elberling, C., Dau, T., Harte, J. M. (2018). On the cost of introducing speech-like properties to a stimulus for auditory steady-state response measurements. Trends in Hearing, 22. https://doi.org/10.1177/2331216518789302
Google Scholar Lins, O. G., Picton, P. E., Picton, T. W., Champagne, S. C., Durieux‐Smith, A. (1995). Auditory steady‐state responses to tones amplitude‐modulated at 80–110 Hz. The Journal of the Acoustical Society of America, 97(5), 3051–3063. https://doi.org/10.1121/1.411869
Google Scholar | Crossref | Medline Marcoux, A., Hansen, M. (2003). Ensuring accuracy of the pediatric hearing aid fitting. Trends in Amplification, 7(1), 11–27. https://doi.org/10.1177/108471380300700103
Google Scholar | SAGE Journals Moeller, M. P. (2000). Early intervention and language development in children who are deaf and hard of hearing. Pediatrics, 106(3), e43–e43. https://doi.org/10.1542/peds.106.3.e43
Google Scholar | Crossref | Medline | ISI Morton, C. C., Nance, W. E. (2006). Newborn hearing screening—A silent revolution. New England Journal of Medicine, 354(20), 2151–2164. https://doi.org/10.1056/nejmra050700
Google Scholar | Crossref | Medline | ISI Naumann, K., Euler, H. A., Knauth, M., & White, K. (2015, October 09–10). The global status of newborn and infant hearing screening [Paper presentation]. 6th Annual Coalition for Global Hearing Health Conference, Washington, DC, United States. http://conference.usu.edu/SYSTEM/Uploads/pdfs/15233_1964KatrinNeumann.pdf
Google Scholar Neumann, K., Chadha, S., Tavartkiladze, G., Bu, X., White, K. R. (2019). Newborn and infant hearing screening facing globally growing numbers of people suffering from disabling hearing loss. International Journal of Neonatal Screening, 5(1), 7. https://doi.org/10.3390/ijns5010007
Google Scholar | Crossref | Medline Park, E. S., Bahng, J., Lee, H. J., Kim, H. J. (2013). The usefulness of sound-field auditory steady state response (SF ASSR): Comparison of hearing sensitivity and typical ASSR. Audiology, 9(1), 15–24. https://doi.org/10.21848/audiol.2013.9.1.15
Google Scholar Picton, T. W., Durieux-Smith, A., Champagne, S. C., Whittingham, J., Moran, L. M., Giguère, C., Beauregard, Y. (1998). Objective evaluation of aided thresholds using auditory steady-state responses. Journal of the American Academy of Audiology, 9, 315–331.
Google Scholar | Medline Picton, T. W., John, M. S., Dimitrijevic, A., Purcell, D. (2003). Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos. International Journal of Audiology, 42(4), 177–219. https://doi.org/10.3109/14992020309101316
Google Scholar | Crossref | Medline | ISI Picton, T. W., Skinner, C. R., Champagne, S. C., Kellett, A. J., Maiste, A. C. (1987). Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. The Journal of the Acoustical Society of America, 82(1), 165–178. https://doi.org/10.1121/1.395560
Google Scholar | Crossref | Medline Plomp, R. (1983, August). Perception of speech as a modulated signal. In Proceedings of the tenth international congress of phonetic sciences (pp. 29–40). Dordrecht, Foris.
Google Scholar Ptok, M. (2011). Early detection of hearing impairment in newborns and infants. Deutsches Ärzteblatt International, 108(25), 426. https://doi.org/10.3238/arztebl.2011.0426
Google Scholar | Medline Punch, S., Van Dun, B., King, A., Carter, L., Pearce, W. (2016). Clinical experience of using cortical auditory evoked potentials in the treatment of infant hearing loss in Australia. Seminars in Hearing, 37(1), 36–52. https://doi.org/10.1055/s-0035-1570331
Google Scholar | Crossref | Medline Rance, G. (2008). The auditory steady-state response: Generation, recording, and clinical application. Plural Publishing.
Google Scholar Rees, A., Green, G. G. R., Kay, R. H. (1986). Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hearing Research, 23(2), 123–133. https://doi.org/10.1016/0378-5955(86)90009-2
Google Scholar | Crossref | Medline Relaño-Iborra, H., May, T., Zaar, J., Scheidiger, C., Dau, T. (2016). Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain. The Journal of the Acoustical Society of America, 140(4), 2670–2679. https://doi.org/10.1121/1.4964505
Google Scholar | Crossref | Medline Roß, B., Borgmann, C., Draganova, R., Roberts, L. E., Pantev, C. (2000). A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. The Journal of the Acoustical Society of America, 108(2), 679–691. https://doi.org/10.1121/1.429600
Google Scholar | Crossref | Medline Rønne, F. M. (2012). Modeling auditory evoked potentials to complex stimuli [PhD thesis]. Department of Electrical Engineering, Technical University of Denmark. http://orbit.dtu.dk/fedora/objects/orbit:127704/datastreams/file_250c6e0a-10de-405b-bfa2-2ab780406324/content
Google Scholar Sardari, S., Jafari, Z., Haghani, H., Talebi, H. (2015). Hearing aid validation based on 40 Hz auditory steady-state response thresholds. Hearing Research, 330, 134–141. https://doi.org/10.1016/j.heares.2015.09.004
Google Scholar | Crossref | Medline Schroeder, M. R. (1981). Modulation transfer functions: Definition and measurement. Acta Acustica United With Acustica, 49(3), 179–182.
Google Scholar Schroeder, M. R., Kuttruff, K. H. (1962). On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima. The Journal of the Acoustical Society of America, 34(1), 76–80. https://doi.org/10.1121/1.1909022
Google Scholar | Crossref Searle, S. R., Speed, F. M., Milliken, G. A. (1980). Population marginal means in the linear model: An alternative to least squares means. American Statistician, 34(4), 216–221. https://doi.org/10.2307/2684063
Google Scholar Selim, M. H., Mourad, M. E., El-Shennawy, A. M., Elfouly, H. S. (2012). Comparing sound field audiometry and free field auditory steady state response in the verification of hearing aid fitting in adults. The Egyptian Journal of Otolaryngology, 28(3), 201. https://doi.org/10.7123/01.EJO.0000418067.42430.a3
Google Scholar Sharma, A., Dorman, M. F., Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear and Hearing, 23(6), 532–539. https://doi.org/10.1097/00003446-200212000-00004
Google Scholar | Crossref | Medline Shemesh, R., Attias, J., Magdoub, H., Nageris, B. I. (2012). Prediction of aided and unaided audiograms using sound-field auditory steady-state evoked responses. International Journal of Audiology, 51(10), 746–753. https://doi.org/10.3109/14992027.2012.700771
Google Scholar | Crossref | Medline Siegenthaler, B. M. (1981). A survey of hearing test rooms. Ear and Hearing, 2(3), 122–126. https://doi.org/10.1097/00003446-198105000-00007
Google Scholar | Crossref | Medline Singh, V. (2015). Newborn hearing screening: Present scenario. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 40(1), 62. https://doi.org/10.4103/0970-0218.149274
Google Scholar | Medline Sininger, Y. S., Grimes, A., Christensen, E. (2010). Auditory development in early amplified children: Factors influencing auditory-based communication outcomes in children with hearing loss. Ear and Hearing, 31(2), 166–185.

留言 (0)

沒有登入
gif