Metabolomics as a Truly Translational Tool for Precision Medicine

1. Beger, RD, Sun, J, Schnackenberg, LK. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 2010;243(2):154-166. doi:10.1016/j.taap.2009.11.019.
Google Scholar | Crossref | Medline2. Beger, RD, Schmidt, MA, Kaddurah-Daouk, R. Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites. 2020;10(4):129. doi:10.3390/metabo10040129.
Google Scholar | Crossref3. Sun, J, Slavov, S, Schnackenberg, LK, et al. Identification of a metabolic biomarker panel in rats for prediction of acute and idiosyncratic hepatotoxicity. Comput Struct Biotechnol J. 2014;10(17):78-89. doi:10.1016/j.csbj.2014.08.001.
Google Scholar | Crossref | Medline4. Beger, RD, Flynn, TJ. Pharmacometabolomics in drug safety and drug-exposome interactions. Metabolomics. 2016;12(7):1-11. doi:10.1007/s11306-016-1061-2.
Google Scholar | Crossref5. Dougherty, BV, Papin, JA. Systems biology approaches help to facilitate interpretation of cross-species comparisons. Curr Opin Toxicol. 2020;23-24:74-79. doi:10.1016/j.cotox.2020.06.002.
Google Scholar | Crossref6. Rawls, KD, Dougherty, BV, Blais, EM, et al. A simplified metabolic network reconstruction to promote understanding and development of flux balance analysis tools. Comput Biol Med. 2019;105:64-71. doi:10.1016/j.compbiomed.2018.12.010.
Google Scholar | Crossref | Medline7. Blais, EM, Rawls, KD, Dougherty, BV, et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun. 2017;8:1-15. doi:10.1038/ncomms14250.
Google Scholar | Crossref | Medline8. Rawls, KD, Dougherty, BV, Vinnakota, KC, et al. Predicting changes in renal metabolism after compound exposure with a genome-scale metabolic model. Toxicol Appl Pharmacol. 2021;412:115390. doi:10.1016/j.taap.2020.115390.
Google Scholar | Crossref | Medline9. Lee, WM . Acetaminophen and the U.S. acute liver failure study group: Lowering the risks of hepatic failure. Hepatology. 2004;40(1):6-9. doi:10.1002/hep.20293.
Google Scholar | Crossref | Medline | ISI10. Beger, RD, Bhattacharyya, S, Yang, X, et al. Translational biomarkers of acetaminophen-induced acute liver injury. Arch Toxicol. 2015;89(9):1497-1522. doi:10.1007/s00204-015-1519-4.
Google Scholar | Crossref | Medline11. Coen, M, Lenz, EM, Nicholson, JK, Wilson, ID, Pognan, F, Lindon, JC. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol. 2003;16(3):295-303. doi:10.1021/tx0256127.
Google Scholar | Crossref | Medline12. Chen, C, Krausz, KW, Shah, YM, Idle, JR, Gonzalez, FJ. Serum metabolomics reveals irreversible inhibition of fatty acid βoxidation through the suppression of PPARα activation as a contributing mechanism of acetaminophen-induced hepatotoxicity. Chem Res Toxicol. 2009;22(4):699-707. doi:10.1021/tx800464q.
Google Scholar | Crossref | Medline13. Bhattacharyya, S, Pence, L, Beger, R, et al. Acylcarnitine profiles in acetaminophen toxicity in the mouse: comparison to toxicity, metabolism and hepatocyte regeneration. Metabolites. 2013;3(3):606-622. doi:10.3390/metabo3030606.
Google Scholar | Crossref | Medline14. Bhattacharyya, S, Yan, K, Pence, L, et al. Targeted liquid chromatography–mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children. Biomark Med. 2014;8(2):147-159. doi:10.2217/bmm.13.150.
Google Scholar | Crossref | Medline15. Sun, J, Ando, Y, Ahlbory-dieker, D, et al. Systems biology investigation to discover metabolic biomarkers of acetaminophen-induced hepatic injury using integrated transcriptomics and metabolomics. J Mol Biomark Diagn. 2013;s1(002):1-11. doi:10.4172/2155-9929.s1-002.
Google Scholar | Crossref16. Hylemon, PB, Zhou, H, Pandak, WM, Ren, S, Gil, G, Dent, P. Bile acids as regulatory molecules. J Lipid Res. 2009;50(8):1509-1520. doi:10.1194/jlr.R900007-JLR200.
Google Scholar | Crossref | Medline17. Trauner, M, Claudel, T, Fickert, P, Moustafa, T, Wagner, M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis. 2010;28(1):220-224. doi:10.1159/000282091.
Google Scholar | Crossref | Medline18. James, O, Roberts, SH, Douglas, A, et al. Liver damage after paracetamol. Lancet. 1975;306:579-581. doi:10.1016/s0140-6736(75)90170-1.
Google Scholar | Crossref19. Kaplowitz, N, Kok, E, Javitt, NB. Postprandial serum bile acid for the detection of hepatobiliary disease. JAMA J Am Med Assoc. 1973;225(3):292-293. doi:10.1001/jama.1973.03220300048011.
Google Scholar | Crossref | Medline20. Korman, MG, Hofmann, AF, Summerskill, WHJ. Assessment of activity in chronic active liver disease: serum bile acids compared with conventional tests and histology. N Engl J Med. 1974;290(25):1399-1402. doi:10.1056/NEJM197406202902503.
Google Scholar | Crossref | Medline21. Luo, L, Schomaker, S, Houle, C, Aubrecht, J, Colangelo, JL. Evaluation of serum bile acid profiles as biomarkers of liver injury in rodents. Toxicol Sci. 2014;137(1):12-25. doi:10.1093/toxsci/kft221.
Google Scholar | Crossref | Medline22. Yamazaki, M, Miyake, M, Sato, H, et al. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats. Toxicol Appl Pharmacol. 2013;268(1):79-89. doi:10.1016/j.taap.2013.01.018.
Google Scholar | Crossref | Medline23. Woolbright, BL, McGill, MR, Staggs, VS, et al. Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen-induced acute liver failure patients. Toxicol Sci. 2014;142(2):436-444. doi:10.1093/toxsci/kfu195.
Google Scholar | Crossref | Medline24. James, L, Yan, K, Pence, L, et al. Comparison of bile acids and acetaminophen protein adducts in children and adolescents with acetaminophen toxicity. PLoS One. 2015;10(7):e0131010. doi:10.1371/journal.pone.0131010.
Google Scholar | Crossref | Medline | ISI25. Schnackenberg, L, Sun, J, Bhattacharyya, S, Gill, P, James, L, Beger, R. Metabolomics analysis of urine samples from children after acetaminophen overdose. Metabolites. 2017;7(3):46. doi:10.3390/metabo7030046.
Google Scholar | Crossref26. Garrett-Bakelman, FE, Darshi, M, Green, SJ, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650. doi:10.1126/science.aau8650.
Google Scholar | Crossref | Medline27. Schmidt, MA, Meydan, C, Schmidt, CM, Afshinnekoo, E, Mason, CE. BioRxiv. Elevation of gut-derived p-cresol during spaceflight and its effect on drug metabolism and performance in astronauts. BioRxiv. Published online 2020:1-10. doi:10.1101/2020.11.10.374645.
Google Scholar | Crossref28. Clayton, TA, Baker, D, Lindon, JC, Everett, JR, Nicholson, JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728-14733. doi:10.1073/pnas.0904489106.
Google Scholar | Crossref | Medline29. Vanholder, R, Schepers, E, Pletinck, A, Nagler, EV, Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25(9):1897-1907. doi:10.1681/ASN.2013101062.
Google Scholar | Crossref | Medline30. Ben-Shachar, R, Chen, Y, Luo, S, Hartman, C, Reed, M, Nijhout, HF. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theor Biol Med Model. 2012;9(1):55. doi:10.1186/1742-4682-9-55.
Google Scholar | Crossref | Medline31. Walker, DI, Perry-Walker, K, Finnell, RH, et al. Metabolome-wide association study of anti-epileptic drug treatment during pregnancy. Toxicol Appl Pharmacol. 2019;363:122-130. doi:10.1016/j.taap.2018.12.001.
Google Scholar | Crossref | Medline32. Fernandes, J, Chandler, JD, Lili, LN, et al. Transcriptome analysis reveals distinct responses to physiologic versus toxic manganese exposure in human neuroblastoma cells. Front Genet. 2019;10:1-15. doi:10.3389/fgene.2019.00676.
Google Scholar | Crossref | Medline33. Go, Y-M, Fernandes, J, Hu, X, Uppal, K, Jones, DP. Mitochondrial network responses in oxidative physiology and disease. Free Radic Biol Med. 2018;116:31-40. doi:10.1016/j.freeradbiomed.2018.01.005.
Google Scholar | Crossref | Medline34. Uppal, K, Ma, C, Go, Y-M, Jones, DP. XMWAS: a data-driven integration and differential network analysis tool. Bioinformatics. 2018;34(4):701-702. doi:10.1093/bioinformatics/btx656.
Google Scholar | Crossref | Medline35. Cribbs, SK, Uppal, K, Li, S, et al. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome. 2016;4(3):1-11. doi:10.1186/s40168-016-0147-4.
Google Scholar | Crossref | Medline36. Thakar, J, Thatcher, TH, Smith, MR, et al. Integrative network analysis linking clinical outcomes with environmental exposures and molecular variations in service personnel deployed to balad and bagram. J Occup Environ Med. 2019;61(12):S65-S72. doi:10.1097/JOM.0000000000001710.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif