Acuña-Castroviejo, D, Escames, G, Figueira, JC, Oliva, P, Borobia, AM, Acuña-Fernández, C (2020) Clinical trial to test the efficacy of melatonin in COVID-19. J Pineal Res 69:e12683.
Google Scholar |
Crossref |
Medline
Andalib, S, Biller, J, di Napoli, M, Moghimi, N, McCullough, LD, Rubinos, CA, O’Hana Nobleza, C, Azarpazhooh, MR, Catanese, L, Elicer, I, et al. (2021) Peripheral nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep 21:9.
Google Scholar |
Crossref |
Medline
Anderson, G, Reiter, RJ (2020) Melatonin: roles in influenza, covid-19, and other viral infections. Rev Med Virol 30:e2109.
Google Scholar |
Crossref |
Medline
Asadi-Pooya, AA, Simani, L (2020) Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci 413:116832.
Google Scholar |
Crossref |
Medline
Baig, AM (2020) Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther 26:499-501.
Google Scholar |
Crossref |
Medline
Besedovsky, L, Lange, T, Haack, M (2019) The sleep-immune crosstalk in health and disease. Physiol Rev 99:1325-1380.
Google Scholar |
Crossref |
Medline
Bhattacharjee, AS, Joshi, SV, Naik, S, Sangle, S, Abraham, NM (2020) Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers. EClinicalMedicine 28:100575.
Google Scholar |
Crossref |
Medline
Bilinska, K, Jakubowska, P, von Bartheld, CS, Butowt, R (2020) Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 11:1555-1562.
Google Scholar |
Crossref |
Medline
Brann, DH, Tsukahara, T, Weinreb, C, Lipovsek, M, van den Berge, K, Gong, B, Chance, R, Macaulay, IC, Chou, HJ, Fletcher, RB, et al. (2020) Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 6:eabc5801.
Google Scholar |
Crossref |
Medline
Cantuti-Castelvetri, L, Ojha, R, Pedro, LD, Djannatian, M, Franz, J, Kuivanen, S, van der Meer, F, Kallio, K, Kaya, T, Anastasina, M, et al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856-860.
Google Scholar |
Crossref |
Medline
Cares-Marambio, K, Montenegro-Jiménez, Y, Torres-Castro, R, Vera-Uribe, R, Torralba, Y, Alsina-Restoy, X, Vasconcello-Castillo, L, Vilaró, J (2021) Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Chron Respir Dis 18: 1-12.
Google Scholar |
SAGE Journals
Cermakian, N, Lange, T, Golombek, D, Sarkar, D, Nakao, A, Shibata, S, Mazzoccoli, G (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30:870-888.
Google Scholar |
Crossref |
Medline |
ISI
de Melo, GD, Lazarini, F, Levallois, S, Hautefort, C, Michel, V, Larrous, F, Verillaud, B, Aparicio, C, Wagner, S, Gheusi, G, et al. (2021) COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med 13:eabf8396.
Google Scholar |
Crossref |
Medline
Deng, J, Zhou, F, Hou, W, Silver, Z, Wong, CY, Chang, O, Huang, E, Zuo, QK (2021) The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci 1486:90-111.
Google Scholar |
Crossref |
Medline
Devore, EE, Grodstein, F, Schernhammer, ES (2013) Shift work and cognition in the nurses’ health study. Am J Epidemiol 178:1296-1300.
Google Scholar |
Crossref |
Medline
Duffy, JF, Czeisler, CA (2002) Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neurosci Lett 318:117-120.
Google Scholar |
Crossref |
Medline |
ISI
Edgar, RS, Stangherlin, A, Nagy, AD, Nicoll, MP, Efstathiou, S, O’Neill, JS, Reddy, AB (2016) Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci USA 113:10085-10090.
Google Scholar |
Crossref |
Medline |
ISI
García, IG, García, IG, Rodriguez-Rubio, M, Rodriguez-Rubio, M, Mariblanca, AR, Mariblanca, AR, de Soto, LM, de Soto, LM, García, LD, García, LD, et al. (2020) A randomized multicenter clinical trial to evaluate the efficacy of melatonin in the prophylaxis of SARS-CoV-2 infection in high-risk contacts (MeCOVID Trial): a structured summary of a study protocol for a randomised controlled trial. Trials 21:466.
Google Scholar |
Crossref |
Medline
Gerkin, RC, Ohla, K, Veldhuizen, MG, Joseph, PV, Kelly, CE, Bakke, AJ, Steele, KE, Farruggia, MC, Pellegrino, R, Pepino, MY, et al. (2021) Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem Senses 46:bjaa081.
Google Scholar |
Crossref |
Medline
Goncalves, S, Goldstein, BJ (2016) Pathophysiology of olfactory disorders and potential treatment strategies. Curr Otorhinolaryngol Rep 4:115-121.
Google Scholar |
Crossref |
Medline
Gözen, ED, Aliyeva, C, Tevetoğlu, F, Karaali, R, Balkan, İİ, Yener, HM, Özdoğan, HA (2021) Evaluation of olfactory function with objective tests in COVID-19-positive patients: a cross-sectional study. Ear Nose Throat J 100:169S-173S.
Google Scholar |
SAGE Journals
Granados-Fuentes, D, Tseng, A, Herzog, ED (2006) A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci 26:12219-12225.
Google Scholar |
Crossref |
Medline |
ISI
Hannum, ME, Ramirez, VA, Lipson, SJ, Herriman, RD, Toskala, AK, Lin, C, Joseph, PV, Reed, DR (2020) Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19-positive patients compared to subjective methods: a systematic review and meta-analysis. Chem Senses 45:865-874.
Google Scholar |
Medline
Haspel, J, Kim, M, Zee, P, Schwarzmeier, T, Montagnese, S, Panda, S, Albani, A, Merrow, M (2021) A timely call to arms: COVID-19, the circadian clock, and critical care. J Biol Rhythms 36:55-70.
Google Scholar |
SAGE Journals |
ISI
Herz, RS (2016) The role of odor-evoked memory in psychological and physiological health. Brain Sci 6:22.
Google Scholar |
Crossref
Herz, RS, Reen, E, van Barker, DH, Hilditch, CJ, Bartz, AL, Carskadon, MA (2018) The influence of circadian timing on olfactory sensitivity. Chem Senses 43:45-51.
Google Scholar |
Crossref
Hut, RA, Pilorz, V, Boerema, AS, Strijkstra, AM, Daan, S (2011) Working for food shifts nocturnal mouse activity into the day. PLoS ONE 6:e17527.
Google Scholar |
Crossref |
Medline |
ISI
Jones, SE, Lane, JM, Wood, AR, van Hees, VT, Tyrrell, J, Beaumont, RN, Jeffries, AR, Dashti, HS, Hillsdon, M, Ruth, KS, et al. (2019) Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun 10:343.
Google Scholar |
Crossref |
Medline
Klopfenstein, T, Kadiane-Oussou, NJ, Toko, L, Royer, P-Y, Lepiller, Q, Gendrin, V, Zayet, S (2020) Features of anosmia in COVID-19. Med Mal Infect 50:436-439.
Google Scholar |
Crossref |
Medline
Krishnan, B, Dryer, SE, Hardin, PE (1999) Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400:375-378.
Google Scholar |
Crossref |
Medline |
ISI
Kronfeld-Schor, N, Stevenson, TJ, Nickbakhsh, S, Schernhammer, ES, Dopico, XC, Dayan, T, Martinez, M, Helm, B (2021) Drivers of infectious disease seasonality: potential implications for COVID-19. J Biol Rhythms 36:35-54.
Google Scholar |
SAGE Journals |
ISI
Lambert, NJ and Survivor Corps (2020) COVID-19 “Long Hauler” symptoms survey report. Indiana University School of Medicine. www.survivorcorps.com
Google Scholar
Laurendon, T, Radulesco, T, Mugnier, J, Gérault, M, Chagnaud, C, El Ahmadi, AA, Varoquaux, A (2020) Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology 95:224-225.
Google Scholar |
Crossref |
Medline
Lechien, JR, Chiesa-Estomba, CM, Beckers, E, Mustin, V, Ducarme, M, Journe, F, Marchant, A, Jouffe, L, Barillari, MR, Cammaroto, G, et al. (2021) Prevalence and 6-month recovery of olfactory dysfunction: a multicentre study of 1363 COVID-19 patients. J Intern Med: 1-11. doi:
10.1111/joim.13209. Google Scholar |
Crossref
Lechien, JR, Radulesco, T, Calvo-Henriquez, C, Chiesa-Estomba, CM, Hans, S, Barillari, MR, Cammaroto, G, Descamps, G, Hsieh, J, Vaira, L, et al. (2021) ACE2 & TMPRSS2 expressions in head & neck tissues: a systematic review. Head Neck Pathol 15:225-235.
Google Scholar |
Crossref |
Medline
Lee, Y, Min, P, Lee, S, Kim, SW (2020) Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci 35:e174.
Google Scholar |
Crossref |
Medline
Levinson, R, Elbaz, M, Ben-Ami, R, Shasha, D, Levinson, T, Choshen, G, Petrov, K, Gadoth, A, Paran, Y (2020) Time course of anosmia and dysgeusia in patients with mild SARS-CoV-2 infection. Infect Diseases 52:600-602.
Google Scholar |
Crossref
Li, J, Long, X, Zhu, C, Wang, H, Wang, T, Lin, Z, Xiong, N (2020) Olfactory dysfunction in recovered coronavirus disease 2019 (COVID-19) patients. Mov Disord 35:1100-1101.
Google Scholar |
Crossref |
Medline
Lötsch, J, Nordin, S, Hummel, T, Murphy, C, Kobal, G (1997) Chronobiology of nasal chemosensitivity: do odor or trigeminal pain thresholds follow a circadian rhythm? Chem Senses 22:593-598.
Google Scholar |
Crossref |
Medline
Mahalaxmi, I, Kaavya, J, Mohana Devi, S, Balachandar, V (2021) COVID-19 and olfactory dysfunction: a possible associative approach towards neurodegenerative diseases. J Cell Physiol 236:763-770.
Google Scholar |
Crossref |
Medline
Malone, SK, Patterson, F, Lu, Y, Lozano, A, Hanlon, A (2016) Ethnic differences in sleep duration and morning-evening type in a population sample. Chronobiol Int 33:10-21.
Google Scholar |
Crossref |
Medline
Marino, M, Li, Y, Rueschman, MN, Winkelman, JW, Ellenbogen, JM, Solet, JM, Dulin, H, Berkman, LF, Buxton, OM (2013) Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 36:1747-1755.
Google Scholar |
Crossref |
Medline |
ISI
Matschke, J, Lütgehetmann, M, Hagel, C, Sperhake, JP, Schröder, AS, Edler, C, Mushumba, H, Fitzek, A, Allweiss, L, Dandri, M, et al. (2020) Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 19:919-929.
Google Scholar |
Crossref |
Medline
Merrow, M, Brunner, M, Roenneberg, T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399:584-586.
Google Scholar |
Crossref |
Medline |
ISI
Mure, LS, Le, HD, Benegiamo, G, Chang, MW, Rios, L, Jillani, N, Ngotho, M, Kariuki, T, Dkhissi-Benyahya, O, Cooper, HM, et al. (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359:eaao0318.
Google Scholar |
Crossref |
Medline
Nordin, S, Lötsch, J, Murphy, C, Hummel, T, Kobal, G (2003) Circadian rhythm and desensitization in chemosensory event-related potentials in response to odorous and painful stimuli. Psychophysiology 40:612-619.
Google Scholar |
Crossref |
Medline |
ISI
Olmedo, M, O’Neill, JS, Edgar, RS, Valekunja, UK, Reddy, AB, Merrow, M (2012) Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in Caenorhabditis elegans. Proc Natl Acad Sci USA 109:20479-20484.
Google Scholar |
Crossref |
Medline
留言 (0)