Cell-Type-Specific Circadian Bioluminescence Rhythms in Dbp Reporter Mice

Abe, M, Herzog, ED, Yamazaki, S, Straume, M, Tei, H, Sakaki, Y, Menaker, M, Block, GD (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350-356.
Google Scholar | Crossref | Medline | ISI Acosta-Rodriguez, VA, de Groot, MHM, Rijo-Ferreira, F, Green, CB, Takahashi, JS (2017) Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26:267-277.e2.
Google Scholar | Crossref | Medline Balsalobre, A, Brown, SA, Marcacci, L, Tronche, F, Kellendonk, C, Reichardt, HM, Schutz, G, Schibler, U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344-2347.
Google Scholar | Crossref | Medline | ISI Brandes, C, Plautz, JD, Stanewsky, R, Jamison, CF, Straume, M, Wood, KV, Kay, SA, Hall, JC (1996) Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16:687-692.
Google Scholar | Crossref | Medline Cesbron, F, Brunner, M, Diernfellner, AC (2013) Light-dependent and circadian transcription dynamics in vivo recorded with a destabilized luciferase reporter in Neurospora. PLoS ONE 8:e83660.
Google Scholar | Crossref Chen, Z, Yoo, SH, Park, YS, Kim, KH, Wei, S, Buhr, E, Ye, ZY, Pan, HL, Takahashi, JS (2012) Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci U S A 109:101-106.
Google Scholar | Crossref | Medline | ISI Cheng, HY, Alvarez-Saavedra, M, Dziema, H, Choi, YS, Li, A, Obreitan, K (2009) Segregation of expression on mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain. Hum Mol Genet 18:3110-3124.
Google Scholar | Crossref | Medline Cheng, AH, Fung, SW, Cheng, HM (2019) Limitations of the AVP-IRES2-Cre (JAX #023530) and VIP-IRES-Cre (JAX #010908) models for chronobiological investigations. J Biol Rhythms 34:634-644.
Google Scholar | SAGE Journals | ISI Damiola, F, Le Minh, N, Preitner, N, Kornmann, B, Fleury-Olela, F, Schibler, U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950-2961.
Google Scholar | Crossref | Medline | ISI Davidson, AJ, Castanon-Cervantes, O, Leise, TL, Molyneux, PC, Harrington, ME (2009) Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Eur J Neurosci 29:171-180.
Google Scholar | Crossref | Medline | ISI Davidson, AJ, Yamazaki, S, Arble, DM, Menaker, M, Block, GD (2008) Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 29:471-477.
Google Scholar | Crossref | Medline Destici, E, Jacobs, EH, Tamanini, F, Loos, M, van der Horst, GTJ, Oklejewicz, M (2013) Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes. PLoS ONE 8:e83802.
Google Scholar | Crossref | Medline Evans, JA, Davidson, AJ (2013) Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci 119:283-323.
Google Scholar | Crossref | Medline | ISI Evans, JA, Leise, TL, Castanon-Cervantes, O, Davidson, AJ (2011) Intrinsic regulation of spatiotemporal organization within the suprachiasmatic nucleus. PLoS ONE 6:e15869.
Google Scholar | Crossref Evans, JA, Leise, TL, Castanon-Cervantes, O, Davidson, AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80:973-983.
Google Scholar | Crossref | Medline | ISI Evans, MS, Chaurette, JP, Adams, ST, Reddy, GR, Paley, MA, Aronin, N, Prescher, JA, Miller, SC (2014) A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11:393-395.
Google Scholar | Crossref | Medline Fonjallaz, P, Ossipow, V, Wanner, G, Schibler, U (1996) The two PAR leucine zipper proteins, TEF and DBP, display similar circadian and tissue-specific expression, but have different target promoter preferences. EMBO J 15:351-362.
Google Scholar | Crossref | Medline | ISI Goyal, V, DeVera, C, Baba, K, Sellers, J, Chrenek, MA, Iuvone, PM, Tosini, G (2021) Photoreceptor degeneration in homozygous male Per2luc mice during aging. J Biol Rhythms 36:137-145.
Google Scholar | SAGE Journals | ISI Hamada, T, Sutherland, K, Ishikawa, M, Miyamoto, N, Honma, S, Shirato, H, Honma, K (2016) In vivo imaging of clock gene expression in multiple tissues of freely moving mice. Nat Commun 7:11705.
Google Scholar | Crossref | Medline Hara, R, Wan, K, Wakamatsu, H, Aida, R, Moriya, T, Akiyama, M, Shibata, S (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269-278.
Google Scholar | Crossref | Medline | ISI Harris, JA, Hirokawa, KE, Sorensen, SA, Gu, H, Mills, M, Ng, LL, Bohn, P, Mortrud, M, Ouellette, B, Kidney, J, et al. (2014) Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 8:76.
Google Scholar | Crossref | Medline Herzog, ED, hermanstyne, T, Smyllie, NJ, Hastings, MH (2017) Regulating the suprachiasmatic nucleus (SCN) clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Springs Harbor Perspect Biol 9:a027706.
Google Scholar | Medline Hirota, T, Lee, JW, Lewis, WG, Zhang, EE, Breton, G, Liu, X, Garcia, M, Peters, EC, Etchegaray, JP, Traver, D, et al. (2010) High-throughput chemical screen identified a novel potent modulator of cellular circadian rhythms and reveals CK1 alpha as a clock regulatory kinase. PLoS Biol 8:e1000559.
Google Scholar | Crossref | Medline Iwano, S, Sugiyama, M, Hama, H, Watakabe, A, Hasegawa, N, Kuchimaru, T, Tanaka, KZ, Takahashi, M, Ishida, Y, Hata, J, et al. (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935-939.
Google Scholar | Crossref | Medline Joye, DAM, Rohr, KE, Keller, D, Inda, T, Telega, A, Pancholi, H, Carmona-Alcocer, V, Evans, JA (2020) Reduced VIP expression affects circadian clock function in VIP-IRES-CRE Mice (JAX 010908). J Biol Rhythms 35:340-352.
Google Scholar | SAGE Journals | ISI Kim, JH, Lee, SR, Li, LH, Park, HJ, Park, JH, Lee, KY, Kim, MK, Shin, BA, Choi, SY (2011) High cleavage efficiency of a 2A peptide derived from porcine Teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6:e18556.
Google Scholar Kondo, T, Strayer, CA, Kulkarni, RD, Taylor, W, Ishiura, M, Golden, SS, Johnson, CH (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 90:5672-5676.
Google Scholar | Crossref | Medline | ISI Kuhlman, SJ, Quintero, JE, McMahon, DG (2000) GFP fluorescence reports Period 1 circadian gene regulation in the mammalian biological clock. Neuroreport 11:1479-1482.
Google Scholar | Crossref | Medline | ISI Kwon, PK, Kim, H-M, Kim, SW, Kang, B, Yi, H, Ku, H-O, Roh, T-Y, Kim, K-T (2019) The poly(C) motif in the proximal promoter region of D site-binding protein gene (Dbp) drives its high-amplitude oscillation. Mol Cell Biol 39:e00101-19.
Google Scholar | Crossref | Medline Kwon, PK, Lee, K-H, Kim, J-H, Tae, S, Ham, S, Jeong, Y-H, Kim, SW, Kang, B, Kim, H-M, Choi, J-H, et al. (2020) hnRNP K supports high-amplitude D site-binding protein mRNA (Dbp mRNA) oscillation to sustain circadian rhythms. Mol Cell Biol 40:e00537-19.
Google Scholar | Crossref | Medline Lee, IT, Chang, AS, Manandhar, M, Shan, Y, Fan, J, Izumo, M, Ikeda, Y, Motoike, T, Dixon, S, Seinfeld, JE, et al. (2015) Neuromedin S-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85:1086-1102.
Google Scholar | Crossref | Medline | ISI Leise, TL (2017) Analysis of nonstationary time series for biological rhythms research. J Biol Rhythms 32:187-194.
Google Scholar | SAGE Journals | ISI Leise, TL, Harrington, ME (2011) Wavelet-based time series analysis of circadian rhythms. J Biol Rhythms 26:454-463.
Google Scholar | SAGE Journals | ISI Leise, TL, Goldberg, A, Michael, J, Montoya, G, Solow, S, Molyneux, P, Vetrivelan, R, Harrington, ME (2020) Recurring circadian disruption alters circadian clock sensitivity to resetting. Eur J Neurosci 51:2343-2354.
Google Scholar | Crossref | Medline Leise, TL, Harrington, ME, Molyneux, PC, Song, I, Queenan, H, Zimmerman, E, Lall, GS, Biello, SM (2013) Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr) 35:2137-2152.
Google Scholar | Crossref | Medline Logan, M, Martin, JF, Nagy, A, Lobe, C, Olson, EN, Tabin, CJ (2002) Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77-80.
Google Scholar | Crossref | Medline | ISI Lopez-Molina, L, Conquet, F, Dubois-Dauphin, M, Schibler, U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762-6771.
Google Scholar | Crossref | Medline | ISI Martin-Burgos, B, Wang, W, William, I, Tir, S, Mohammad, I, Javed, R, Smith, S, Cui, Y, Arzavala J, Mora D, Smith, CB, van der Vinne, V, et al. (2022) Methods for detecting PER2::LUCIFERASE bioluminescence rhythms in freely moving mice. J Biol Rhythms (In press). doi:10.1177/07487304211062829.
Google Scholar | Crossref Maywood, ES, Drynan, L, Chesham, JE, Edwards, MD, Dardente, H, Fustin, JM, Hazlerigg, DG, O’Neill, JS, Codner, GF, Smyllie, NJ, et al. (2013) Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Proc Natl Acad Sci U S A 110:9547-9552.
Google Scholar | Crossref | Medline Mei, L, Fan, Y, Lv, X, Welsh, DK, Zhan, C, Zhang, EE (2018) Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proc Natl Acad Sci U S A 115:4276-4281.
Google Scholar | Crossref | Medline Mieda, M, Okamoto, H, Sakurai, T (2016) Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr Biol 26:2535-2542.
Google Scholar | Crossref | Medline Mieda, M, Ono, D, Hasegawa, E, Okamoto, H, Honma, K, Honma, S, Sakurai, T (2015) Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103-1116.
Google Scholar | Crossref | Medline | ISI Millar, AJ, Carre, IA, Strayer, CA, Chua, NH, Kay, SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161-1163.
Google Scholar | Crossref | Medline | ISI Millar, AJ, Short, SR, Chua, NH, Kay, SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075-1087.
Google Scholar | Crossref | Medline | ISI Miller, JE, Granados-Fuentes, D, Wang, T, Marpegan, L, Holy, TE, Herzog, ED (2014) Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction. J Neurosci 34:6040-6046.
Google Scholar | Crossref | Medline | ISI Mohawk, JA, Green, CB, Takahashi, JS (2012)

留言 (0)

沒有登入
gif