Impact of XRCC1 genetic variants on its Tissue Expression and Breast Cancer Risk: A Case Control Study

Background

X-ray repair cross-complementing group 1 (XRCC1), a coordinator protein of the DNA repair complex, is thought to be involved in cancer progression. This case-control study aimed to investigate the association of two biallelic single-nucleotide polymorphisms (SNPs; Arg399Gln, Arg194Trp) of the XRCC1 gene with its tissue expression level and breast cancer (BC) risk in Egyptian women.

Methods

This study included 100 BC female patients (case group 1) and 100 healthy females (control group 2). The XRCC1 tissue expression was assessed by immunohistochemistry (IHC). Genotyping of the two XRCC1 SNPs (Arg399Gln, Arg194Trp) using real-time polymerase chain reaction (PCR) was also conducted.

Results

The XRCC1 expression level was significantly lower in cancerous tissues than adjacent non-cancerous tissues (P<0.001). The XRCC1 399Gln/Gln genotype, 399Gln allele, the dominant, and recessive models were significantly associated with lower XRCC1 expression in breast cancerous tissues and increased risk for BC (3.390-, 1.965-, 2.241-, and 2.429-folds respectively). The XRCC1 399Gln/Gln genotype was associated with lower incidence of advanced tumor grade (OR: 0.06; 95%CI: 0.01-0.74; P=0.028). Conversely, the XRCC1 Arg194Trp polymorphism did not show any significant association with either XRCC1 expression in breast cancer tissues or BC risk in all genetic models. The XRCC1 haplotypes, 399Gln/194Arg and 399Gln/194Trp, were associated with 1.800- and 1.675-folds risk for BC, respectively.

Conclusions

The XRCC1 gene polymorphism (Arg399Gln) is associated with reduced XRCC1 tissue expression and enhanced BC risk with a well-differentiated nature in Egyptian women. Moreover, XRCC1 haplotypes, 399Gln/194Arg and 399Gln/194Trp, were associated with increased BC risk.

留言 (0)

沒有登入
gif