Prognostic Significance of Lacunarity in Preoperative Biopsy of Colorectal Cancer

1.

Jass JR, Morson BC (1987) Reporting colorectal cancer. J Clin Pathol 40:1016–1023

CAS  Article  Google Scholar 

2.

Morodomi T, Isomoto H, Shirouzu K, Kakegawa K, Irie K, Morimatsu M (1989) An index estimating the probability of lymph node metastasis in rectal cancers. Cancer 63:539–543

CAS  Article  Google Scholar 

3.

Hase K, Shatney C, Johnson D et al (1993) Prognostic value of tumor "budding" in patients with colorectal cancer. Dis Colon Rectum 36:627–635. https://doi.org/10.1007/bf02238588

CAS  Article  PubMed  Google Scholar 

4.

Prall F (2007) Tumor budding incolorectal carcinoma. Histopathology 50:151–162. https://doi.org/10.1111/j.1365-2559.2006.02551.x

CAS  Article  PubMed  Google Scholar 

5.

Dawson H, Lugli A (2015) Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne) 2:11. https://doi.org/10.3389/fmed.2015.00011

Article  Google Scholar 

6.

Zlobec I, Lugli A (2010) Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget 1:651–661. https://doi.org/10.18632/oncotarget.199

Article  PubMed  PubMed Central  Google Scholar 

7.

Lugli A, Karamitopolou E, Zlobec I (2012) Tumor budding: a promising parameter in colorectal cancer. Br J Cancer 106:1713–1717. https://doi.org/10.1038/bjc.2012.127

CAS  Article  PubMed  PubMed Central  Google Scholar 

8.

Puppa G, Senore C, Sheahan K et al (2012) Diagnostic reproducibility of tumour budding in colorectal cancer: a multicentre, multinational study using virtual microscopy. Histopathology 61:562–575. https://doi.org/10.1111/j.1365-2559.2012.04270.x

Article  PubMed  Google Scholar 

9.

Wang LM, Kevans D, Mulcahy H et al (2009) Tumor budding is a strong and reproducible prognostic marker in T3N0 colorectal cancer. Am J Surg Pathol 33:134–141. https://doi.org/10.1097/PAS.0b013e318184cd55

CAS  Article  PubMed  Google Scholar 

10.

Ueno H, Murphy J, Jass JR et al (2002) Tumour 'budding' as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40(2):127–132. https://doi.org/10.1046/j.1365-2559.2002.01324.x

CAS  Article  Google Scholar 

11.

Nakamura T, Mitomi H, Kikuchi S et al (2005) Evaluation of the usefulness of tumor budding on the prediction of metastasis to the lung and liver after curative excision of colorectal cancer. Hepatogastroenterology 52:1432–1435

PubMed  Google Scholar 

12.

Ueno H, Kajiwara Y, Shimazaki H et al (2012) New criteria for histologic grading of colorectal cancer. Am J Surg Pathol 36:193–201. https://doi.org/10.1097/PAS.0b013e318235edee

Article  PubMed  Google Scholar 

13.

Horcic M, Koelzer VH, Karamitopoulou E et al (2012) Tumor budding score based on 10 high-power fields is a promising basis for a standardized prognostic scoring system in stage II colorectal cancer. Hum Pathol 44:697–705. https://doi.org/10.1016/j.humpath.2012.07.026

Article  PubMed  Google Scholar 

14.

Koelzer VH, Zlobec I, Berger MD et al (2015) Tumor budding in colorectal cancer revisited: results of a multicenter interobserver study. Virchows Arch 466:485–493. https://doi.org/10.1007/s00428-015-1740-9

CAS  Article  PubMed  Google Scholar 

15.

Koelzer VH, Zlobec I, Lugli A (2016) Tumor budding in colorectal cancer–ready for diagnostic practice? Hum Pathol 47:4–19. https://doi.org/10.1016/j.humpath.2015.08.007

Article  PubMed  Google Scholar 

16.

van Wyk HC, Park J, Roxburgh C et al (2015) The role of tumour budding in predicting survival in patients with primary operable colorectal cancer: a systematic review. Cancer Treat Rev 41:151–159,. https://doi.org/10.1016/j.ctrv.2014.12.007

Article  PubMed  Google Scholar 

17.

Okamura T, Shimada Y, Nogami H et al (2016) Tumor budding detection by immunohistochemical staining is not superior tohematoxylin and eosin staining for predicting lymph node metastasis in pT1 colorectal cancer. Dis Colon Rectum 59:396–402. https://doi.org/10.1097/DCR.0000000000000567

Article  PubMed  Google Scholar 

18.

Eriksen AC, Andersen JB, Lindebjerg J et al (2018) Does heterogeneity matter in the estimation of tumour budding and tumour stroma ratio in colon cancer? Diagn Pathol 13:20. https://doi.org/10.1186/s13000-018-0697-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

19.

Karamitopoulou E, Zlobec I, Kölzer V et al (2013) Proposal for a 10-high-power-fields scoring method for the assessment of tumor budding in colorectal cancer. Mod Pathol 26:295–301. https://doi.org/10.1038/modpathol.2012.155

CAS  Article  PubMed  Google Scholar 

20.

Martin B, Schäfer E, Jakubowicz E et al (2018) Level of interobserver variability estimation as a valuable tool: assessment of tumour budding in colon cancer. Histopathology 73:864–868. https://doi.org/10.1111/his.13698

Article  PubMed  Google Scholar 

21.

Martin B, Schäfer E, Jakubowicz E et al (2018) Interobserver variability in the H&E-based assessment of tumor budding in pT3/4 colon cancer: does it affect the prognostic relevance. Virchows Arch 473:189–197. https://doi.org/10.1007/s00428-018-2341-1

Article  PubMed  Google Scholar 

22.

Lugli A, Kirsch R, Ajioka Y et al (2017) Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol 30:1299–1311. https://doi.org/10.1038/modpathol.2017.46

23.

Rogers AC, Gibbons D, Hanly AM et al (2013) Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod Pathol 27:156–162. https://doi.org/10.1038/modpathol.2013.124

Article  PubMed  Google Scholar 

24.

Jessup JM, Goldberg RM, Asare EA et al (2018) Colon and rectum. In: Edge SB, Greene LF, Schilsky RI (eds) AJCC cancer staging manual, 8th edn. Springer, Berlin, pp 251–294

Google Scholar 

25.

Betge J, Langner C (2011) Vascular invasion, perineural invasion, and tumour budding: predictors of outcome in colorectal cancer. Acta Gastroenterol Bel:516–529

26.

Beaton C, Twine CP, Williams GL, Radcliffe AG (2013) Systematic review and meta-analysis of histopathological factors influencing the risk of lymph node metastasis in early colorectal cancer. Colorectal Dis 15:788–797. https://doi.org/10.1111/codi.12129

CAS  Article  PubMed  Google Scholar 

27.

Poeschl EM, Pollheimer MJ, Kornprat P et al (2010) Perineural invasion: correlation with aggressive phenotype and independent prognostic variable in both colon and rectum cancer. J Clin Oncol 28:e358–e362. https://doi.org/10.1200/JCO.2009.27.3581

Article  PubMed  Google Scholar 

28.

Ueno H, Shirouzu K, Eishi Y et al (2013) Characterization of perineural invasion as a component of colorectal cancer staging. Am J Surg Pathol 37:1542–1549. https://doi.org/10.1097/PAS.0b013e318297ef6e

Article  PubMed  Google Scholar 

29.

Zlobec I, Hädrich M, Dawson H et al (2014) Intratumoural budding (ITB) in preoperative biopsies predicts the presence of lymph node and distant metastases in colon and rectal cancer patients. Br J Cancer 110:1008–1013. https://doi.org/10.1038/bjc.2013.797

CAS  Article  PubMed  Google Scholar 

30.

Koelzer VH, Lugli A, Dawson H et al (2014) CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival. J Transl Med 12:81. https://doi.org/10.1186/1479-5876-12-81

CAS  Article  PubMed  PubMed Central  Google Scholar 

31.

Giger OT, Comtesse SC, Lugli A et al (2012) Intra-tumoral budding in preoperative biopsy specimens predicts lymph node and distant metastasis in patients with colorectal cancer. Mod Pathol 25:1048–1053. https://doi.org/10.1038/modpathol.2012.56

Article  PubMed  Google Scholar 

32.

Barresi V, Bonetti LR, Ieni A et al (2014) Histologic grading based on counting poorly differentiated clusters in preoperative biopsy predicts nodal involvement and pTNM stage in colorectal cancer patients. Hum Pathol 45:268–275,. https://doi.org/10.1016/j.humpath.2013.07.046

Article  PubMed  Google Scholar 

33.

Barresi V, Reggiani Bonetti L, Ieni A et al (2016) Histologic prognostic markers in stage IIA colorectal cancer: a comparative study. Scand J Gastroenterol 51:314–320. https://doi.org/10.3109/00365521.2015.1084646

CAS  Article  PubMed  Google Scholar 

34.

Konishi T, Shimada Y, Lee LH et al (2018) Poorly differentiated clusters predict colon cancer recurrence: an In-depth comparative analysis of invasive-front prognostic markers. Am J Surg Pathol 42:705–714,. https://doi.org/10.1097/PAS.0000000000001059

Article  PubMed  PubMed Central  Google Scholar 

35.

Karperien A, Charles Sturt University, Australia/Canada, FracLac for ImageJ, V. 2.5, Available at: https://www.researchgate.net/publication/258341589_FracLac_for_ImageJ. Accessed 19 Dec 2019

36.

Valous NA, Xiong W, Halama N et al (2018) Multilacunarity as a spatial multiscale multi-mass morphometric of change in the meso-architecture of plant parenchyma tissue. Chaos 28:093110. https://doi.org/10.1063/1.5047021

CAS  Article  PubMed  Google Scholar 

37.

Mambetsariev I, Mirzapoiazova T, Lennon F et al (2019) Small cell lung cancer therapeutic responses through fractal measurements: from radiology to mitochondrial biology. J Clin Med 8:1038. https://doi.org/10.3390/jcm8071038

CAS  Article  PubMed Central  Google Scholar 

38.

Waliszewski P (2017) The quantitative criteria based on the fractal dimensions, entropy, and lacunarity for the spatial distribution of cancer cell nuclei enable identification of low or high aggressive prostate carcinomas. Front Physiol 7:E34. https://doi.org/10.3389/fphys.2016.00034

Article  Google Scholar 

39.

Cencini M, Cecconi F, Vulpiani A (2010) Chaos: From Simple Models to Complex Systems. World Scientific, Hackensack

Google Scholar 

40.

Lennon FE, Cianci GC, Kanteti R et al (2016) Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma. Sci Rep 6:24578. https://doi.org/10.1038/srep24578

CAS  Article  PubMed  PubMed Central  Google Scholar 

41.

Esgiar AN, Naguib RMN, Sharif BC et al (2002) Fractal analysis in the detection of colonic cancer images. IEEE Trans Inf Technol Biomed 6:54–58

Article  Google Scholar 

42.

Broeke J, Pérez JMM, Pascau J (2015) Image Processing with ImageJ. Packt Publishing, Birmingham

Google Scholar 

43.

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

44.

Rowe P (2016) Essential Statistics for the Pharmaceutical sciences. Wiley, Chichester

Google Scholar 

45.

Therneau T, Atkinson B (2018) rpart: Recursive Partitioning and Regression Trees. R package version 4.1–13. https://CRAN.R-project.org/package=rpart

46.

Ulm K, Kriner M, Eberle S, Reck M, Hessler S (2006) Statistical methods to identify predictive factors. In: Crowley J, Ankerst D (eds) Handbook of statistics in clinical oncology, 2nd edn. Chapman & Hall/CRC, Boca Raton, pp 335–345

留言 (0)

沒有登入
gif