Increasing attention has been paid on the application of biodegradable materials such as magnesium and its alloys in neuron repair. AZ91D magnesium alloy coated with carbon nanotubes (CNTs) and/or calcium phosphate (CaP)/chitosan (CS) was fabricated in this study. To evaluate the bioactivity of these AZ91D-based composites, the extracts were prepared by immersing samples in modified simulated body fluid (m-SBF) for 0, 2, 8, 16, 24, 34, 44, 60, or 90 days. Immunofluorescence staining for neuronal class III β-tubulin (TUJ1) revealed that both CNTs-CaP/CS-AZ91D and CaP/CS-AZ91D extracts promoted axon outgrowth of dorsal root ganglia (DRG) neurons, accompanied with increased expression of phosphorylated focal adhesion kinase (p-FAK) and growth associated protein-43 (GAP-43). Besides, the extracts increased the expression and the release of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). ERK signalling was activated in DRG neurons after treating with either CNTs-CaP/CS-AZ91D or CaP/CS-AZ91D extracts, and its inhibition with U0126 counteracted the beneficial effects of these extracts on DRG neuron. Overall, the extracts from these AZ91D-based composites might promote DRG neuron growth via activating ERK signalling pathway. Notably, CNTs-CaP/CS-AZ91D extracts showed a better promoting effect on neuron growth than CaP/CS-AZ91D. Assessment of ion elements showed that the addition of CNTs coating enhanced magnesium corrosion resistance and reduced the deposition of calcium and phosphorus on the surface of CaP/CS-AZ91D alloy. These findings demonstrate that CNTs-CaP/CS-AZ91D likely provide a more suitable environment for neuron growth, which suggests a potential implantable biomaterial for the treatment of nerve injury.
SignificanceAZ91D magnesium alloy coated with carbon nanotubes (CNTs) and/or calcium phosphate (CaP)/chitosan (CS) was fabricated and their immersion extracts were prepared using modified simulated body fluid in this study. Both extracts from CNTs-CaP/CS and CaP/CS-coated AZ91D magnesium alloy promotes rat dorsal root ganglia (DRG) neuron growth via activating ERK signalling pathway. Notably, the addition of CNTs improves the performance of CaP/CS-AZ91D. For the first time, our research demonstrates that CNTs-CaP/CS-AZ91D likely provide a suitable environment for neuron growth, suggesting these AZ91D-based composites as potential implantable biomaterials for the treatment of nerve injury.
留言 (0)