Exosomes: advances, development and potential therapeutic strategies in diabetic nephropathy

Webster A.C. Nagler E.V. Morton R.L. Masson P.

Chronic kidney disease.

Lancet. 389: 1238-1252https://doi.org/10.1016/s0140-6736(16)32064-5

Update on diabetic nephropathy: Core curriculum 2018.

Am J Kidney Dis. 71: 884-895https://doi.org/10.1053/j.ajkd.2017.10.026Alicic R.Z. Rooney M.T. Tuttle K.R.

Diabetic kidney disease: challenges, Progress, and possibilities.

Clin J Am Soc Nephrol. 12: 2032-2045https://doi.org/10.2215/cjn.11491116

American Diabetes Association. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43:S135-s51. https://doi.org/10.2337/dc20-S011.

Anders H.J. Huber T.B. Isermann B. Schiffer M.

CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease.

Nat Rev Nephrol. 14: 361-377https://doi.org/10.1038/s41581-018-0001-yMuskiet M.H.A. Wheeler D.C. Heerspink H.J.L.

New pharmacological strategies for protecting kidney function in type 2 diabetes.

Lancet Diabetes Endocrinol. 7: 397-412https://doi.org/10.1016/s2213-8587(18)30263-8Pavkov M.E. Knowler W.C. Lemley K.V. Mason C.C. Myers B.D. Nelson R.G.

Early renal function decline in type 2 diabetes.

Clin J Am Soc Nephrol. 7: 78-84https://doi.org/10.2215/cjn.07610711DeFronzo R.A. Reeves W.B. Awad A.S.

Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors.

Nat Rev Nephrol. 17: 319-334https://doi.org/10.1038/s41581-021-00393-8Wen J. Ma Z. Livingston M.J. Zhang W. Yuan Y. Guo C. et al.

Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease.

Am J Physiol Renal Physiol. 319: F664-f73https://doi.org/10.1152/ajprenal.00292.2020Su H. Qiao J. Hu J. Li Y. Lin J. Yu Q. et al.

Podocyte-derived extracellular vesicles mediate renal proximal tubule cells dedifferentiation via microRNA-221 in diabetic nephropathy.

Mol Cell Endocrinol. 518: 111034https://doi.org/10.1016/j.mce.2020.111034Trams E.G. Lauter C.J. Salem N.J. Heine U.

Exfoliation of membrane ecto-enzymes in the form of micro-vesicles.

Biochim Biophys Acta. 645: 63-70https://doi.org/10.1016/0005-2736(81)90512-5Johnstone R.M. Adam M. Hammond J.R. Orr L. Turbide C.

Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes).

J Biol Chem. 262: 9412-9420

The biology, function, and biomedical applications of exosomes.

Science. 367https://doi.org/10.1126/science.aau6977

Exosomes: endosomal-derived vesicles shipping extracellular messages.

Curr Opin Cell Biol. 16: 415-421https://doi.org/10.1016/j.ceb.2004.06.003

Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy.

Annu Rev Physiol. 77: 13-27https://doi.org/10.1146/annurev-physiol-021014-071641Shao H. Im H. Castro C.M. Breakefield X. Weissleder R. Lee H.

New Technologies for Analysis of extracellular vesicles.

Chem Rev. 118: 1917-1950https://doi.org/10.1021/acs.chemrev.7b00534Hyenne V. Apaydin A. Rodriguez D. Spiegelhalter C. Hoff-Yoessle S. Diem M. et al.

RAL-1 controls multivesicular body biogenesis and exosome secretion.

J Cell Biol. 211: 27-37https://doi.org/10.1083/jcb.201504136

Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30; sup pp 1–13. https://doi.org/10.1038/ncb2000.

Huang-Doran I. Zhang C.Y. Vidal-Puig A.

Extracellular vesicles: novel mediators of cell communication in metabolic disease.

Trends Endocrinol Metab. 28: 3-18https://doi.org/10.1016/j.tem.2016.10.003Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O.

Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

Nat Cell Biol. 9: 654-659https://doi.org/10.1038/ncb1596

Communication by extracellular vesicles: where we are and where we need to go.

Cell. 164: 1226-1232https://doi.org/10.1016/j.cell.2016.01.043Akers J.C. Gonda D. Kim R. Carter B.S. Chen C.C.

Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies.

J Neurooncol. 113: 1-11https://doi.org/10.1007/s11060-013-1084-8Mathieu M. Martin-Jaular L. Lavieu G. Théry C.

Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.

Nat Cell Biol. 21: 9-17https://doi.org/10.1038/s41556-018-0250-9

Ectosomes and exosomes: shedding the confusion between extracellular vesicles.

Trends Cell Biol. 25: 364-372https://doi.org/10.1016/j.tcb.2015.01.004Colombo M. Raposo G. Théry C.

Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.

Annu Rev Cell Dev Biol. 30: 255-289https://doi.org/10.1146/annurev-cellbio-101512-122326van Niel G. D'Angelo G. Raposo G.

Shedding light on the cell biology of extracellular vesicles.

Nat Rev Mol Cell Biol. 19: 213-228https://doi.org/10.1038/nrm.2017.125

Exosomes in Parkinson's disease: current perspectives and future challenges.

ACS Chem Nerosci. 10: 964-972https://doi.org/10.1021/acschemneuro.8b00469Castaño C. Kalko S. Novials A. Párrizas M.

Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice.

Proc Natl Acad Sci U S A. 115: 12158-12163https://doi.org/10.1073/pnas.1808855115Wu R. Gao W. Yao K. Ge J.

Roles of exosomes derived from immune cells in cardiovascular diseases.

Front Immunol. 10: 648https://doi.org/10.3389/fimmu.2019.00648Wu H. Fu M. Liu J. Chong W. Fang Z. Du F. et al.

The role and application of small extracellular vesicles in gastric cancer.

Mol Cancer. 20: 71https://doi.org/10.1186/s12943-021-01365-zLiang Y. Duan L. Lu J. Xia J.

Engineering exosomes for targeted drug delivery.

Theranostics. 11: 3183-3195https://doi.org/10.7150/thno.52570Yang D. Zhang W. Zhang H. Zhang F. Chen L. Ma L. et al.

Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics.

Theranostics. 10: 3684-3707https://doi.org/10.7150/thno.41580

Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity.

J Control Release. 228: 179-190https://doi.org/10.1016/j.jconrel.2016.02.037Ludwig N. Whiteside T.L. Reichert T.E.

Challenges in exosome isolation and analysis in health and disease.

Int J Mol Sci. 20https://doi.org/10.3390/ijms20194684

Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. https://doi.org/10.3402/jev.v3.26913.

Chen S.J. Lv L.L. Liu B.C. Tang R.N.

Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease.

Cell Prolif. 53e12763https://doi.org/10.1111/cpr.12763da Silva Novaes A. Borges F.T. Maquigussa E. Varela V.A. Dias M.V.S. Boim M.A.

Influence of high glucose on mesangial cell-derived exosome composition, secretion and cell communication.

Sci Rep. 9: 6270https://doi.org/10.1038/s41598-019-42746-1

Exosome biochemistry and advanced nanotechnology for next-generation Theranostic platforms.

Adv Mater. 31e1802896https://doi.org/10.1002/adma.201802896Karpman D. Ståhl A.L. Arvidsson I.

Extracellular vesicles in renal disease.

Nat Rev Nephrol. 13: 545-562https://doi.org/10.1038/nrneph.2017.98Gildea J.J. Seaton J.E. Victor K.G. Reyes C.M. Bigler Wang D. Pettigrew A.C. et al.

Exosomal transfer from human renal proximal tubule cells to distal tubule and collecting duct cells.

Clin Biochem. 47: 89-94https://doi.org/10.1016/j.clinbiochem.2014.06.018Fu J. Lee K. Chuang P.Y. Liu Z. He J.C.

Glomerular endothelial cell injury and cross talk in diabetic kidney disease.

Am J Physiol Renal Physiol. 308: F287-F297https://doi.org/10.1152/ajprenal.00533.2014Ling L. Tan Z. Zhang C. Gui S. Cui Y. Hu Y. et al.

CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells.

Am J Transl Res. 11: 4667-4682Wu X.M. Gao Y.B. Cui F.Q. Zhang N.

Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis.

Biol Open. 5: 484-491https://doi.org/10.1242/bio.015990Wu X. Gao Y. Xu L. Dang W. Yan H. Zou D. et al.

Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes.

Sci Rep. 7: 9371https://doi.org/10.1038/s41598-017-09907-6

Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:151. https://doi.org/10.3389/fendo.2014.00151.

Wang Y.Y. Tang L.Q. Wei W.

Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway.

Eur J Pharmacol. 824: 185-192https://doi.org/10.1016/j.ejphar.2018.01.034

Mechanisms of renal fibrosis.

Annu Rev Physiol. 80: 309-326https://doi.org/10.1146/annurev-physiol-022516-034227Venkatachalam M.A. Weinberg J.M. Kriz W. Bidani A.K.

Failed tubule recovery, AKI-CKD transition, and kidney disease progression.

J Am Soc Nephrol. 26: 1765-1776https://doi.org/10.1681/asn.2015010006Liu B.C. Tang T.T. Lv L.L. Lan H.Y.

Renal tubule injury: a driving force toward chronic kidney disease.

Kidney Int. 93: 568-579https://doi.org/10.1016/j.kint.2017.09.033Lv L.L. Feng Y. Wu M. Wang B. Li Z.L. Zhong X. et al.

Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury.

Cell Death Differ. 27: 210-226https://doi.org/10.1038/s41418-019-0349-yAlicic R.Z. Johnson E.J. Tuttle K.R.

Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease.

Adv Chronic Kidney Dis. 25: 181-191https://doi.org/10.1053/j.ackd.2017.12.002Van J.A. Scholey J.W. Konvalinka A.

Insights into diabetic kidney disease using urinary proteomics and bioinformatics.

J Am Soc Nephrol. 28: 1050-1061https://doi.org/10.1681/asn.2016091018

Mora-Fernández C, Muros de Fuentes M, García-Pérez J. inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.

Nat Rev Nephrol. 7: 327-340https://doi.org/10.1038/nrneph.2011.51Viola A. Munari F. Sánchez-Rodríguez R. Scolaro T. Castegna A.

The metabolic signature of macrophage responses.

Front Immunol. 10: 1462https://doi.org/10.3389/fimmu.2019.01462Nguyen D. Ping F. Mu W. Hill P. Atkins R.C. Chadban S.J.

Macrophage accumulation in human progressive diabetic nephropathy.

Nephrology (Carlton). 11: 226-231https://doi.org/10.1111/j.1440-1797.2006.00576.xPérez-Morales R.E. Del Pino M.D. Valdivielso J.M. Ortiz A. Mora-Fernández C. Navarro-González J.F.

Inflammation in diabetic kidney disease.

Nephron. 143: 12-16https://doi.org/10.1159/000493278

Role of the immune system in diabetic kidney disease.

Curr Diab Rep. 18: 20https://doi.org/10.1007/s11892-018-0984-6Ding X. Jing N. Shen A. Guo F. Song Y. Pan M. et al.

MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20.

J Endocrinol Invest. 44: 1175-1184https://doi.org/10.1007/s40618-020-01401-7Zhu M. Sun X. Qi X. Xia L. Wu Y.

Exosomes from high glucose-treated macrophages activate macrophages andinduce inflammatory responses via NF-κB signaling pathway in vitro and in vivo.

Int Immunopharmacol. 84: 106551https://doi.org/10.1016/j.intimp.2020.106551Zhu Q.J. Zhu M. Xu X.X. Meng X.M. Wu Y.G.

Exosomes from high glucose-treated macrophages activate glomerular mesangial cells via TGF-β1/Smad3 pathway in vivo and in vitro.

FASEB J. 33: 9279-9290https://doi.org/10.1096/fj.201802427RRRKimura T. Isaka Y. Yoshimori T.

Autophagy and kidney inflammation.

Autophagy. 13: 997-1003https://doi.org/10.1080/15548627.2017.1309485Choi A.M. Ryter S.W. Levine B.

Autophagy in human health and disease.

N Engl J Med. 368: 651-662https://doi.org/10.1056/NEJMra1205406Tang C. Livingston M.J. Liu Z. Dong Z.

Autophagy in kidney homeostasis and disease.

Nat Rev Nephrol. 16: 489-508https://doi.org/10.1038/s41581-020-0309-2

Autophagy pathway: cellular and molecular mechanisms.

Autophagy. 14: 207-215https://doi.org/10.1080/15548627.2017.1378838Tagawa A. Yasuda M. Kume S. Yamahara K. Nakazawa J. Chin-Kanasaki M. et al.

Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy.

Diabetes. 65: 755-767https://doi.org/10.2337/db15-0473Sakai S. Yamamoto T. Takabatake Y. Takahashi A. Namba-Hamano T. Minami S. et al.

Proximal tubule autophagy differs in type 1 and 2 diabetes.

J Am Soc Nephrol. 30: 929-945https://doi.org/10.1681/asn.2018100983He Q. Wang L. Zhao R. Yan F. Sha S. Cui C. et al.

Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy.

Stem cell research & therapy. 11: 223https://doi.org/10.1186/s13287-020-01731-6Huang C. Zhang Y. Kelly D.J. Tan C.Y. Gill A. Cheng D. et al.

Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway.

Sci Rep. 6: 29196https://doi.org/10.1038/srep29196Ebrahim N. Ahmed I.A. Hussien N.I. Dessouky A.A. Farid A.S. Elshazly A.M. et al.

Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway.

Cells. 7https://doi.org/10.3390/cells7120226Jin J. Shi Y. Gong J. Zhao L. Li Y. He Q. et al.

Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte.

Stem cell research & therapy. 10: 95https://doi.org/10.1186/s13287-019-1177-1Li F. Li H. Jin X. Zhang Y. Kang X. Zhang Z. et al.

Adipose-specific knockdown of Sirt1 results in obesity and insulin resistance by promoting exosomes release.

Cell Cycle. 18: 2067-2082https://doi.org/10.1080/15384101.2019.1638694

Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease.

Nephrol Dial Transplant. 31: 206-213https://doi.org/10.1093/ndt/gfu405Artunc F. Schleicher E. Weigert C. Fritsche A. Stefan N. Häring H.U.

The impact of insulin resistance on the kidney and vasculature.

Nat Rev Nephrol. 12: 721-737https://doi.org/10.1038/nrneph.2016.145

Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell. 2017;171:372–84.e12. https://doi.org/10.1016/j.cell.2017.08.035.

Ge Q. Xie X.X. Xiao X. Li X.

Exosome-like vesicles as new mediators and therapeutic targets for treating insulin resistance and β-cell mass failure in type 2 diabetes mellitus.

J Diabetes Res. 2019: 3256060https://doi.org/10.1155/2019/3256060Zhang L.H. Zhu X.Y. Eirin A. Nargesi A.A. Woollard J.R. Santelli A. et al.

Early podocyte injury and elevated levels of urinary podocyte-derived extracellular vesicles in swine with metabolic syndrome: role of podocyte mitochondria.

Am J Physiol Renal Physiol. 317: F12-f22https://doi.org/10.1152/ajprenal.00399.2018

The biology and function of exosomes in cancer.

J Clin Invest. 126: 1208-1215https://doi.org/10.1172/jci81135Lv L.L. Cao Y. Liu D. Xu M. Liu H. Tang R.N. et al.

Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery.

Int J Biol Sci. 9: 1021-1031https://doi.org/10.7150/ijbs.6100

Circulating and urinary microRNAs in kidney disease.

Clin J Am Soc Nephrol. 7: 1528-1533https://doi.org/10.2215/cjn.01170212Cheng L. Sun X. Scicluna B.J. Coleman B.M. Hill A.F.

Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine.

Kidney Int. 86: 433-444https://doi.org/10.1038/ki.2013.502Barutta F. Tricarico M. Corbelli A. Annaratone L. Pinach S. Grimaldi S. et al.

Urinary exosomal microRNAs in incipient diabetic nephropathy.

PloS one. 8e73798https://doi.org/10.1371/journal.pone.0073798Delić D. Eisele C. Schmid R. Baum P. Wiech F. Gerl M. et al.

Urinary Exosomal miRNA signature in type II diabetic nephropathy patients.

PloS one. 11e0150154https://doi.org/10.1371/journal.pone.0150154Eissa S. Matboli M. Bekhet M.M.

Clinical verification of a novel urinary microRNA panal: 133b, −342 and −30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis.

Biomed Pharmacother. 83: 92-99https://doi.org/10.1016/j.biopha.2016.06.018Xie Y. Jia Y. Cuihua X. Hu F. Xue M. Xue Y.

Urinary Exosomal MicroRNA profiling in incipient type 2 diabetic kidney disease.

J Diabetes Res. 2017: 6978984https://doi.org/10.1155/2017/6978984Zang J. Maxwell A.P. Simpson D.A. McKay G.J.

Differential expression of urinary Exosomal MicroRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease.

Sci Rep. 9: 10900https://doi.org/10.1038/s41598-019-47504-xLee W.C. Li L.C. Ng H.Y. Lin P.T. Chiou T.T. Kuo W.H. et al.

Urinary Exosomal MicroRNA signatures in nephrotic.

Biopsy-Proven Diabetic Nephropathy J Clin Med. 9https://doi.org/10.3390/jcm9041220Tsai Y.C. Kuo M.C. Hung W.W. Wu L.Y. Wu P.H. Chang W.A. et al.

High glucose induces mesangial cell apoptosis through miR-15b-5p and promotes diabetic nephropathy by extracellular vesicle delivery.

Mol Ther. 28: 963-974https://doi.org/10.1016/j.ymthe.2020.01.014Mohan A. Singh R.S. Kumari M. Garg D. Upadhyay A. Ecelbarger C.M. et al.

Urinary Exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats.

PloS one. 11e0154055https://doi.org/10.1371/journal.pone.0154055Kim H. Bae Y.U. Jeon J.S. Noh H. Park H.K. Byun D.W. et al.

The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy.

J Transl Med. 17: 236https://doi.org/10.1186/s12967-019-1983-3Raimondo F. Corbetta S. Morosi L. Chinello C. Gianazza E. Castoldi G. et al.

Urinary exosomes and diabetic nephropathy: a proteomic approach.

Mol Biosyst. 9: 1139-1146https://doi.org/10.1039/c2mb25396hAbe H. Sakurai A. Ono H. Hayashi S. Yoshimoto S. Ochi A. et al.

Urinary Exosomal mRNA of WT1 as diagnostic and prognostic biomarker for diabetic nephropathy.

J Med Invest. 65: 208-215https://doi.org/10.2152/jmi.65.208Kalani A. Mohan A. Godbole M.M. Bhatia E. Gupta A. Sharma R.K. et al.

Wilm's tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria.

PloS one. 8e60177https://doi.org/10.1371/journal.pone.0060177

Zubiri I, Posada-Ayala M, Benito-Martin A, Maroto AS, Martin-Lorenzo M, Cannata-Ortiz P, et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Transl Res. 2015;166:474–84.e4. https://doi.org/10.1016/j.trsl.2015.05.007.

Sakurai A. Ono H. Ochi A. Matsuura M. Yoshimoto S. Kishi S. et al.

Involvement of Elf3 on Smad3 activation-dependent injuries in podocytes and excretion of urinary exosome in diabetic nephropathy.

PloS one. 14e0216788https://doi.org/10.1371/journal.pone.0216788Zubiri I. Posada-Ayala M. Sanz-Maroto A. Calvo E. Martin-Lorenzo M. Gonzalez-Calero L. et al.

Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis.

J Proteomics. 96: 92-102https://doi.org/10.1016/j.jprot.2013.10.037

Management of diabetic nephropathy: recent progress and future perspective.

Diabetes Metab Syndr Clin Res Rev. 9: 343-358https://doi.org/10.1016/j.dsx.2015.02.008Fernandez-Fernandez B. Ortiz A. Gomez-Guerrero C. Egido J.

Therapeutic approaches to diabetic nephropathy--beyond the RAS.

Nat Rev Nephrol. 10: 325-346https://doi.org/10.1038/nrneph.2014.74Phinney D.G. Pittenger M.F.

Concise review: MSC-derived exosomes for cell-free therapy.

Stem Cells. 35: 851-858https://doi.org/10.1002/stem.2575

Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm.

Biomark Res. 7: 8https://doi.org/10.1186/s40364-019-0159-xJin J. Wang Y. Zhao L. Zou W. Tan M. He Q.

Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial-mesenchymal transition of podocytes by inhibiting ZEB2.

Biomed Res Int. 2020: 2685305https://doi.org/10.1155/2020/2685305Jiang Z.Z. Liu Y.M. Niu X. Yin J.Y. Hu B. Guo S.C. et al.

Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats.

Stem cell research & therapy.

留言 (0)

沒有登入
gif