T Cells: A Growing Universe of Roles in Neurodegenerative Diseases

Ali, MM, Ghouri, RG, Ans, AH, Akbar, A, Toheed, A. 2019. Recommendations for anti-inflammatory treatments in Alzheimer’s disease: a comprehensive review of the literature. Cureus 11(5). doi:10.7759/cureus.4620
Google Scholar | Crossref Appel, SH, Beers, DR, Henkel, JS. 2010. T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 31(1):7–17. doi:10.1016/j.it.2009.09.003
Google Scholar | Crossref | Medline Arlehamn, CSL, Pham, J, Alcalay, RN, Frazier, A, Shorr, E, Carpenter, C, and others. 2019. Widespread tau-specific CD4 T cell reactivity in the general population. J Immunol 203(1):84–92. doi:10.4049/jimmunol.1801506
Google Scholar | Crossref | Medline Baecher-Allan, C, Kaskow, BJ, Weiner, HL. 2018. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97(4):742–68. doi:10.1016/j.neuron.2018.01.021
Google Scholar | Crossref | Medline Baek, H, Ye, M, Kang, GH, Lee, C, Lee, G, Choi, DB, and others. 2016. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget 7(43):69347–57. doi:10.18632/oncotarget.12469
Google Scholar | Crossref Banerjee, R, Mosley, RL, Reynolds, AD, Dhar, A, Jackson-Lewis, V, Gordon, PH, and others. 2008. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 3(7):e2740. doi:10.1371/journal.pone.0002740
Google Scholar | Crossref | Medline | ISI Baruch, K, Rosenzweig, N, Kertser, A, Deczkowska, A, Sharif, AM, Spinrad, A, and others. 2015. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun 6(1):7967. doi:10.1038/ncomms8967
Google Scholar | Crossref | Medline Beers, DR, Henkel, JS, Zhao, W, Wang, J, Huang, A, Wen, S, and others. 2011. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134(5):1293–314. doi:10.1093/brain/awr074
Google Scholar | Crossref | Medline Bhela, S, Kempsell, C, Manohar, M, Dominguez-Villar, M, Griffin, R, Bhatt, P, and others. 2015. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol 194(5):2180–9. doi:10.4049/jimmunol.1303257
Google Scholar | Crossref | Medline Brochard, V, Combadière, B, Prigent, A, Laouar, Y, Perrin, A, Beray-Berthat, V, and others. 2008. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182–92. doi:10.1172/JCI36470
Google Scholar | Crossref | Medline Cao, C, Arendash, GW, Dickson, A, Mamcarz, MB, Lin, X, Ethell, DW. 2009. Aβ-specific Th2 cells provide cognitive and pathological benefits to Alzheimer’s mice without infiltrating the CNS. Neurobiol Dis 34(1):63–70. doi:10.1016/j.nbd.2008.12.015
Google Scholar | Crossref | Medline Chen, Z, Chen, S, Liu, J. 2018. The role of T cells in the pathogenesis of Parkinson’s disease. Progr Neurobiol 169:1–23. https://doi.org/10.1016/j.pneurobio.2018.08.002
Google Scholar Chiu, IM, Chen, A, Zheng, Y, Kosaras, B, Tsiftsoglou, SA, Vartanian, TK, and others. 2008. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105(46):17913–8. doi:10.1073/pnas.0804610105
Google Scholar | Crossref Chou, JP, Effros, RB. 2013. T cell replicative senescence in human aging. Curr Pharm Des 19(9):1680–98.
Google Scholar | Medline Coque, E, Salsac, C, Espinosa-Carrasco, G, Varga, B, Degauque, N, Cadoux, and others. 2019. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci U S A 116(6):2312–7. doi:10.1073/pnas.1815961116
Google Scholar | Crossref | Medline Dansokho, C, Ait Ahmed, D, Aid, S, Toly-Ndour, C, Chaigneau, T, Calle, V, and others. 2016. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139(4):1237–51. doi:10.1093/brain/awv408
Google Scholar | Crossref | Medline De Biasi, S, Meschiari, M, Gibellini, L, Bellinazzi, C, Borella, R, Fidanza, L, and others. 2020. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11(1):3434. doi:10.1038/s41467-020-17292-4
Google Scholar | Crossref | Medline Elyaman, W, Kivisäkk, P, Reddy, J, Chitnis, T, Raddassi, K, Imitola, J, and others. 2008. Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am J Pathol 173(2):411–22. doi:10.2353/ajpath.2008.080142
Google Scholar | Crossref | Medline Ethell, DW, Shippy, D, Cao, C, Cracchiolo, JR, Runfeldt, M, Blake, B, and others. 2006. Aβ-specific T-cells reverse cognitive decline and synaptic loss in Alzheimer’s mice. Neurobiol Dis 23(2):351–61. doi:10.1016/j.nbd.2006.03.008
Google Scholar | Crossref | Medline Folch, J, Petrov, D, Ettcheto, M, Abad, S, Sánchez-López, E, García, ML, and others. 2016. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693. doi:10.1155/2016/8501693
Google Scholar | Crossref | Medline Galiano-Landeira, J, Torra, A, Vila, M, Bové, J. 2020. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 143(12):3717–33. doi:10.1093/brain/awaa269
Google Scholar | Crossref | Medline Gate, D, Saligrama, N, Leventhal, O, Yang, AC, Unger, MS, Middeldorp, J, and others. 2020. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577(7790):399–404. doi:10.1038/s41586-019-1895-7
Google Scholar | Crossref | Medline Gustafson, MP, Staff, NP, Bornschlegl, S, Butler, GW, Maas, ML, Kazamel, M, and others. 2017. Comprehensive immune profiling reveals substantial immune system alterations in a subset of patients with amyotrophic lateral sclerosis. PLoS One 12(7):e0182002. doi:10.1371/journal.pone.0182002
Google Scholar | Crossref | Medline Hashimoto, K, Kouno, T, Ikawa, T, Hayatsu, N, Miyajima, Y, Yabukami, H, and others. 2019. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci U S A 116(48):24242–51. doi:10.1073/pnas.1907883116
Google Scholar | Crossref Hauser, SL, Bhan, AK, Gilles, F, Kemp, M, Kerr, C, Weiner, HL. 1986. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19(6):578–87. doi:10.1002/ana.410190610
Google Scholar | Crossref | Medline Iba, M, Kim, C, Sallin, M, Kwon, S, Verma, A, Overk, C, and others. 2020. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and α-synuclein transgenic models. J Neuroinflammation 17(1):214. doi:10.1186/s12974-020-01888-0
Google Scholar | Crossref | Medline Jagger, AT, Shimojima, Y, Goronzy, JJ, Weyand, CM. 2014. T regulatory cells and the immune aging process. Gerontology 60(2):130–7. doi:10.1159/000355303
Google Scholar | Crossref | Medline Jin, M, Günther, R, Akgün, K, Hermann, A, Ziemssen, T. 2020. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep 10(1):5941. doi:10.1038/s41598-020-62756-8
Google Scholar | Crossref | Medline Kaltsonoudis, E, Voulgari, PV, Konitsiotis, S, Drosos, AA. 2014. Demyelination and other neurological adverse events after anti-TNF therapy. Autoimmun Rev 13(1):54–8. doi:10.1016/j.autrev.2013.09.002
Google Scholar | Crossref | Medline Krienke, C, Kolb, L, Diken, E, Streuber, M, Kirchhoff, S, Bukur, T, and others. 2021. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371(6525):145–53. doi:10.1126/science.aay3638
Google Scholar | Crossref | Medline Kustrimovic, N, Comi, C, Magistrelli, L, Rasini, E, Legnaro, M, Bombelli, R, and others. 2018. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 15(1):205. doi:10.1186/s12974-018-1248-8
Google Scholar | Crossref | Medline Larbi, A, Pawelec, G, Witkowski, JM, Schipper, HM, Derhovanessian, E, Goldeck, D, and others. 2009. Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 17(1):91–103. doi:10.3233/JAD-2009-1015
Google Scholar | Crossref | Medline Laurent, C, Dorothée, G, Hunot, S, Martin, E, Monnet, Y, Duchamp, M, and others. 2017. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140(1):184–200. doi:10.1093/brain/aww270
Google Scholar | Crossref | Medline Lindestam Arlehamn, CS, Dhanwani, R, Pham, J, Kuan, R, Frazier, A, Rezende Dutra, J, and others. 2020. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun 11(1):1875. doi:10.1038/s41467-020-15626-w
Google Scholar | Crossref | Medline Mackenzie, IRA, Rademakers, R. 2008. The role of TDP-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21(6):693–700. doi:10.1097/WCO.0b013e3283168d1d
Google Scholar | Crossref | Medline Martin, HL, Santoro, M, Mustafa, S, Riedel, G, Forrester, JV, Teismann, P. 2016. Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson’s disease. Glia 64(3):386–95. doi:10.1002/glia.22935
Google Scholar | Crossref Merlini, M, Kirabali, T, Kulic, L, Nitsch, RM, Ferretti, MT. 2018. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: an immunohistochemical study. Neurodegener Dis 18(1):49–56. doi:10.1159/000486200
Google Scholar | Crossref | Medline Mittal, K, Eremenko, E, Berner, O, Elyahu, Y, Strominger, I, Apelblat, D, and others. 2019. CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. iScience 16:298–311. doi:10.1016/j.isci.2019.05.039
Google Scholar | Crossref | Medline Monsonego, A, Zota, V, Karni, A, Krieger, JI, Bar-Or, A, Bitan, G, and others. 2003. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J Clin Invest 112(3):415–22. doi:10.1172/JCI200318104
Google Scholar | Crossref | Medline Northfield, JW, Loo, CP, Barbour, JD, Spotts, G, Hecht, FM, Klenerman, P, and others. 2007. Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ TEMRA cells in early infection are linked to control of HIV-1 viremia and predict the subsequent viral load set point. J Virol 81(11):5759–65. https://doi.org/10.1128/JVI.00045-07
Google Scholar Oberstein, TJ, Taha, L, Spitzer, P, Hellstern, J, Herrmann, M, Kornhuber, J, and others. 2018. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: a case control study. Front Immunol 9. doi:10.3389/fimmu.2018.01213
Google Scholar | Crossref Olah, M, Menon, V, Habib, N, Taga, MF, Ma, Y, Yung, CJ, and others. 2020. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun 11(1):6129. doi:10.1038/s41467-020-19737-2
Google Scholar | Crossref | Medline Olesen, MN, Christiansen, JR, Petersen, SV, Jensen, PH, Paslawski, W, Romero-Ramos, M 2018. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon 4(1):e00513. doi:10.1016/j.heliyon.2018.e00513
Google Scholar | Crossref | Medline Ousman, SS, Kubes, P. 2012. Immune surveillance in the central nervous system. Nat Neurosci 15(8):1096–101. doi:10.1038/nn.3161
Google Scholar | Crossref | Medline Panossian, LA, Porter, VR, Valenzuela, HF, Zhu, X, Reback, E, Masterman, D, and others. 2003. Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging 24(1):77–84. doi:10.1016/S0197-4580(02)00043-X

留言 (0)

沒有登入
gif