Diabetes and kidney disease: emphasis on treatment with SGLT-2 inhibitors and GLP-1 receptor agonists

Chronic kidney disease.

Lancet. 379: 165-180Bjerg L. Hulman A. Carstensen B. Charles M. Jørgensen M.E. Witte D.R.

Development of microvascular complications and effect of concurrent risk factors in type 1 diabetes: a multistate model from an observational clinical cohort study.

Diabetes Care. 41: 2297-2305van Dieren S. Beulens J.W. van der Schouw Y.T. et al.

The global burden of diabetes and its complications: an emerging pandemic.

Eur J Cardiovasc Prev Rehabil. 17: S3-S8

-Freedman, Barry I.; Bostrom, Meredith; Daeihagh, Pirouz; Bowden, Donald W. Genetic Factors in Diabetic Nephropathy. Clinical Journal of the American Society of Nephrology. 2 (6): 1306–1316.

DeFronzo R.A. Reeves W.B. Awad A.S.

Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors.

Nat Rev Nephrol. 17: 319-334

Identification of non-diabetic glomerular disease in renal biopsies from diabetics—a dilemma.

Nephrol Dial Transplant. 14: 1846-1849Adamsson Eryd S. Svensson A.M. Franzén S. Eliasson B. Nilsson P.M. Gudbjörnsdottir S.

Risk of future microvascular and macrovascular disease in people with type 1 diabetes of very long duration: a national study with 10-year follow-up.

Diabet Med. 34: 411-418Dal Canto E. Ceriello A. Rydén L. et al.

Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications.

Eur J Prev Cardiol. 26: 25-32Tuomilehto J. Borch-Johnsen K. Molarius A. Forsén T. Rastenyte D. Sarti C. et al.

Incidence of cardiovascular disease in type 1 (insulin-dependent) diabetic subjects with and without diabetic nephropathy in Finland.

Diabetologia. 41: 784-790Gaede P. Lund-Andersen H. Parving H.H. Pedersen O.

Effect of a multifactorial intervention on mortality in type 2 diabetes.

N Engl J Med. 358: 580-591Prattichizzo F. La Sala L. Rydén L. Marx N. Ferrini M. Valensi P. et al.

Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases.

Eur J Prev Cardiol. 26: 73-80de Boer I.H. DCCT/EDIC Research Group

Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study.

Diabetes Care. 37: 24-30Stratton I.M. Adler A.I. Neil A.W. Matthews D.R. Manley S.E. Cull C.A. et al.

Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study.

Br Med J. 321: 405-412

Microvascular disease: what does the UKPDS tell us about diabetic nephropathy?.

Diabet Med. 25: 25-29Testa R. Bonfigli A.R. Prattichizzo F. La Sala L. De Nigris V. Ceriello A.

The “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications.

Nutrients. 9: 437

UKPDS and the legacy effect.

N Engl J Med. 359: 1618-1620Prattichizzo F. de Candia P. De Nigris V. Nicolucci A. Ceriello A.

Legacy effect of intensive glucose control on major adverse cardiovascular outcome: systematic review and meta-analyses of trials according to different scenarios.

Metabolism. 110: 154308Wong M.G. Perkovic V. Chalmers J. et al.

ADVANCE-ON Collaborative Group. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON.

Diabetes Care. 39: 694-700Mottl A.K. Buse J.B. Ismail-Beigi F. et al.

Long-term effects of intensive glycemic and blood pressure control and fenofibrate use on kidney outcomes.

Clin J Am Soc Nephrol. 13: 1693-1702

-Fogelfeld L, Hart P, Miernik J, et al. Combined diabetes-renal multifactorial intervention in patients with advanced diabetic nephropathy: proof-of-concept. J Diabetes Complications 31(3):624–630.

Kuzhively J. Tahsin B. Hart P. Fogelfeld L.

Legacy effect in combined diabetic-renal multifactorial intervention in patients with advanced diabetic nephropathy.

J Diabetes Complications. 32: 474-479Lewis E.J. Hunsicker L.G. Clarke W.R. Berl T. Pohl M.A. Lewis J.B. et al.

Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.

N Engl J Med. 345: 851-860Menne J. Ritz E. Ruilope L.M. Chatzikyrkou C. Viberti G. Haller H.

The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation.

J Am Heart Assoc. 3e000810Zoungas S. Chalmers J. Neal B. et al.

ADVANCE-ON Collaborative Group. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes.

N Engl J Med. 371: 1392-1406Kawanami D. Matoba K. Utsunomiya K.

Dyslipidemia in diabetic nephropathy.

Ren Replace Ther. 2: 16Sasaki T. Kurata H. Nomura K. Utsunomiya K. Ikeda Y.

Amelioration of proteinuria with pravastatin in hypercholesterolemic patients with diabetes mellitus.

Jpn J Med. 29: 156-163Colhoun H.M. Betteridge D.J. Durrington P.N. Hitman G.A. Neil H.A. Livingstone S.J. et al.

Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS).

Am J Kidney Dis. 54: 810-819Zhu L. Hayen A. Bell K.J.L.

Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: a secondary analysis of the ACCORDION study.

Cardiovasc Diabetol. 19: 28

Obesity and diabetic kidney disease.

Med Clin North Am. 97: 59-74Hsu C.Y. McCulloch C.E. Iribarren C. Darbinian J. Go A.S.

Body mass index and risk for end-stage renal disease.

Ann Intern Med. 144: 21-28Gelber R.P. Kurth T. Kausz A.T. Manson J.E. Buring J.E. Levey A.S. et al.

Association between body mass index and CKD in apparently healthy men.

Am J Kidney Dis. 46: 871-880Coleman K.J. Haneuse S. Johnson E. et al.

Long-term microvascular disease outcomes in patients with type 2 diabetes after bariatric surgery: evidence for the legacy effect of surgery.

Diabetes Care. 39: 1400-1407

KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease.

Kidney Int. 98: S1-S115Goldstein-Fuchs J. Kalantar-Zadeh K.

Nutrition intervention for advanced stages of diabetic kidney disease.

Diabetes Spectr. 28: 181-186

Diabetic microvascular disease: an endocrine society scientific statement.

J Clin Endocrinol Metab. 102: 4343-4410

Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy.

Curr Pharm Des. 14: 962-968

Activation of protein kinase C isoforms and its impact on diabetic complications.

Circ Res. 106: 1319-1331

O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar.

FEBS Lett. 546: 154-158

High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells.

J Clin Invest. 101: 160-169

The pathobiology of diabetic complications: a unifying mechanism.

Diabetes. 54: 1615-1625

Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.

Nature. 404: 787-790

Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction.

Diabetes. 53: 762-768

The emerging challenge in diabetes: the “metabolic memory”.

Vascul Pharmacol. 57: 133-138

Epigenetic mechanisms in diabetic vascular complications and metabolic memory: the 2020 Edwin Bierman Award Lecture.

Diabetes. 70: 328-337

Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus.

BMC Med Genomics. 3: 33

Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development.

Genome Biol. 14: R108

Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort.

Proc Natl Acad Sci U S A. 113: E3002-E3011

Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes.

Diabetes. 63: 1748-1762Prattichizzo F. Giuliani A. De Nigris V. et al.

Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?.

Diabetes Obes Metab. 18: 855-867

MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets.

Ann N Y Acad Sci. 1353 (): 72-88https://doi.org/10.1111/nyas.12758Prattichizzo F. De Nigris V. Sabbatinelli J. et al.

CD31(+) extracellular vesicles from patients with type 2 diabetes shuttle a miRNA signature associated with cardiovascular complications.

Diabetes. 70: 240-254Florijn B.W. Duijs J.M.G.J. Levels J.H. et al.

Diabetic nephropathy alters the distribution of circulating angiogenic microRNAs among extracellular vesicles, HDL, and Ago-2.

Diabetes. 68: 2287-2300Prattichizzo F. Matacchione G. Giuliani A. Sabbatinelli J. Olivieri F. de Candia P. et al.

Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications.

Theranostics. 11: 1031-1045

Cellular senescence in aging and age-related disease: from mechanisms to therapy.

Nat Med. 21: 1424-1435

Cellular senescence in type 2 diabetes: a therapeutic opportunity.

Diabetes. 64: 2289-2298

Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages.

Redox Biol. 15: 170-181

Inflammageing and metaflammation: the yin and yang of type 2 diabetes.

Ageing Res Rev. 41: 1-17

Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy.

Am J Physiol Renal Physiol. 295: F1563-F1573

Ageing as a druggable process: moving forward.

EBioMedicine. 40: 15-16Palmer A.K. Xu M. Zhu Y. et al.

Targeting senescent cells alleviates obesity-induced metabolic dysfunction.

Aging Cell. 18e12950Hickson L.J. Langhi Prata L.G.P. Bobart S.A. et al.

Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease.

EBioMedicine. 47: 446-456

hs-CRP is associated with incident diabetic nephropathy: findings from the Jackson heart study.

Diabetes Care. 42: 2083-2089

Prevalence of residual inflammatory risk and associated clinical variables in patients with type 2 diabetes.

Diabetes Obes Metab. 22: 1696-1700

The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial.

Lancet Diabetes Endocrinol. 3: 687-696Woodcock J. Sharfstein J.M. Hamburg M.

Regulatory action on rosiglitazone by the U.S. Food and Drug Administration.

N Engl J Med. 363: 1489-1491Pfeffer M.A. Claggett B. Diaz R. et al.

ELIXA Investigators. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.

N Engl J Med. 373: 2247-2257Marso S.P. Daniels G.H. Brown-Frandsen K. et al.

LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes.

N Engl J Med. 375: 311-322Marso S.P. Bain S.C. Consoli A. et al.

SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.

N Engl J Med. 375: 1834-1844Holman R.R. Bethel M.A. Mentz R.J. EXSCEL Study Group et al.

Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.

N Engl J Med. 377: 1228-1239Gerstein H.C. Colhoun H.M. Dagenais G.R. et al.

REWIND Investigators. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial.

Lancet. 394: 121-130Hernandez A.F. Green J.B. Janmohamed S. et al.

Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony Outcomes): a double-blind, randomised placebo-controlled trial.

Lancet. 392: 1519-1529Husain M. Birkenfeld A.L. Donsmark M. et al.

PIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes.

N Engl J Med. 381: 841-851Giugliano D. Maiorino M.I. Bellastella G. Longo M. Chiodini P. Esposito K.

GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials.

Diabetes Obes Metab. 21: 2576-2580Mann J.F.E. Hansen T. Idorn T. Leiter L.A. Marso S.P. Rossing P. et al.

Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials.

Lancet Diabetes Endocrinol. 8: 880-893

Improving management of diabetic kidney disease: will GLP-1 receptor agonists have a role?.

Lancet Diabetes Endocrinol. 8: 870-871American Diabetes Association

Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2021.

Diabetes Care. 44: S111-S124Pulipati Vishnu Priya Ravi Venkatesh Pulipati Priyanjali

Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus: a systematic review and meta-analysis.

Eur J Prev Cardiol. 27: 1922-1930Zinman B. Wanner C. Lachin J.M. et al.

EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.

N Engl J Med. 373: 2117-2128Neal B. Perkovic V. Mahaffey K.W. et al.

CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes.

N Engl J Med. 377: 644-657Wiviott S.D. Raz I. Bonaca M.P. et al.

DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes.

N Engl J Med. 380: 347-357Cannon C.P. Pratley R. Dagogo-Jack S. et al.

VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes.

N Engl J Med. 383: 1425-1435Bhatt D.L. Szarek M. Pitt B. et al.

SCORED Investigators. Sotagliflozin in patients with diabetes and chronic kidney disease.

N Engl J Med. 384: 129-139Zelniker T.A. Wiviott S.D. Raz I. et al.

SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.

Lancet. 393: 31-39Perkovic V. Jardine M.J. Neal B. et al.

CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.

N Engl J Med. 380: 2295-2306Heerspink H.J.L. Stefánsson B.V. Correa-Rotter R. et al.

DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease.

N Engl J Med. 383: 1436-1446McMurray J.J.V. Solomon S.D. Inzucchi S.E. et al.

DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction.

N Engl J Med. 381: 1995-2008Packer M. Anker S.D. Butler J. et al.

EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure.

N Engl J Med. 383: 1413-1424McGuire D.K. Shih W.J. Cosentino F. et al.

Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis.

JAMA Cardiol. 6: 148-158Silverii G.A. Monami M. Mannucci E.

Sodium-glucose co-transporter-2 inhibitors and all-cause mortality: a meta-analysis of randomized controlled trials.

Diabetes Obes Metab. 23: 1052-1056Giugliano D. Longo M. Caruso P. Maiorino M.I. Bellastella G. Esposito K.

Sodium-glucose co-transporter-2 inhibitors for the prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis.

Diabetes Obes Metab. 12Sposito A.C. Berwanger O. de Carvalho L.S.F. et al.

GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data.

Cardiovasc Diabetol. 17: 157Rajasekeran H. Lytvyn Y. Cherney D.Z.

Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis.

Kidney Int. 89: 524-526

Effects of SGLT2 inhibitors on kidney and cardiovascular function.

Annu Rev Physiol. 10 (): 503-528Koska J. Sands M. Burciu C. D’Souza K.M. Raravikar K. Liu J. et al.

Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans.

Diabetes. 64: 2624-2635Sun F. Wu S. Guo S. Yu K. Yang Z. Li L. et al.

Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis.

Diabetes Res Clin Pract. 110: 26-37

Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling.

Int J Mol Sci. 19: 26Ceriello A. Novials A. Ortega E. et al.

Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes.

Diabetes Care. 36: 2346-2350Schwartz E.A. Koska J. Mullin M.P. Syoufi I. Schwenke D.C. Reaven P.D.

Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus.

Atherosclerosis. 212: 217-222Daousi C. Pinkney J.H. Cleator J. Wilding J.P. Ranganath L.R.

Acute peripheral administration of synthetic human GLP-1 (7-36 amide) decreases circulating IL-6 in obese patients with type 2 diabetes mellitus: a potential role for GLP-1 in modulation of the diabetic pro-inflammatory state?.

Regul Pept. 183: 54-61Hadjiyanni I. Siminovitch K.A. Danska J.S. Drucker D.J.

Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells.

Diabetologia. 53: 730-740

Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: diabetes meets dermatology.

Diabetologia. 54: 2741-2744Jensen J. Omar M. Kistorp C. et al.

Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): a prespecified substudy of a double-blind, randomised, placebo-controlled trial.

Lancet Diabetes Endocrinol. 9: 106-116Lambers Heerspink Hiddo J. Ninomiya Toshiharu Perkovic Vlado Woodward Mark Zoungas Sophia Cass Alan et al.

Effects of a fixed combination of perindopril and indapamide in patients with type 2 diabetes and chronic kidney disease.

Eur Heart J. 31: 2888-2896Muskiet M.H.A. Heerspink H.J.L. van Raalte D.H.

SGLT2 inhibitors: expanding their Empire beyond diabetes.

Lancet Diabetes Endocrinol. 9: 59-61Inzucchi S.E. Zinman B. Fitchett D. et al.

How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial.

Diabetes Care. 41: 356-363Georgianos P.I. Agarwal R.

Ambulatory blood pressure reduction with SGLT-2 inhibitors: dose-response meta-analysis and comparative evaluation with low-dose hydrochlorothiazide.

Diabetes Care. 42: 693-700Chino Y. Samukawa Y. Sakai S. Nakai Y. Yamaguchi J. Nakanishi T. et al.

SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.

Biopharm Drug Dispos. 35: 391-404Wang H. Yang J. Chen X. Qiu F. Li J.

Effects of sodium-glucose cotransporter 2 inhibitor monotherapy on weight changes in patients with type 2 diabetes mellitus: a Bayesian Network Meta-analysis.

Clin Ther. 41 ()Ferrannini E. Baldi S. Frascerra S. Astiarraga B. Barsotti E. Clerico A. et al.

Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes.

Diabetes Care. 40: 771-776Ferrannini E. Mark M. Mayoux E.

CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis.

Diabetes Care. 39: 1108-1114Verma S. Rawat S. Ho K.L. et al.

Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors.

JACC Basic Transl Sci. 3: 575-587Prattichizzo F. De Nigris V. Micheloni S. La Sala L. Ceriello A.

Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: is low-grade inflammation the neglected component?.

Diabetes Obes Metab. 20: 2515-2522Kim S.R. Lee S.G. Kim S.H. et al.

SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease.

Nat Commun. 11: 2127Heerspink H.J.L. Perco P. Mulder S. Leierer J. Hansen M.K. Heinzel A. et al.

Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.

Diabetologia. 62: 1154-1166Wu R. Liu X. Yin J. Wu H. Cai X. Wang N. et al.

IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice.

Metabolism. 83: 18-24Fontana L. Partridge L. Longo V.D.

Extending healthy life span-from yeast to humans.

Science. 328: 321-326Kraus W.E. Bhapkar M. Huffman K.M. et al.

CALERIE Investigators. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial.

Lancet Diabetes Endocrinol. 7: 673-683

Sodium-glucose co-transporter inhibitors: medications that mimic fasting for cardiovascular prevention.

Diabetes Obes Metab. 21: 2211-2218Clegg L.E. Heerspink H.J.L. Penland R.C. Tang W. Boulton D.W. Bachina S. et al.

Reduction of cardiovascular risk and improved estimated glomerular filtration rate by SGLT2 inhibitors, including dapagliflozin, is consistent across the class: an analysis of the placebo arm of EXSCEL.

Diabetes Care. 42: 318-326Prattichizzo F. La Sala L. Ceriello A.

Two drugs are better than one to start T2DM therapy.

Nat Rev Endocrinol. 16: 15-16Prattichizzo F. Ceriello A.

Positioning newer drugs in the management of type 2 diabetes.

Lancet Diabetes Endocrinol. 9: 138-139Hendarto H. Inoguchi T. Maeda Y. Ikeda N. Zheng J. Takei R. et al.

GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases.

Metabolism. 61: 1422-1434Kodera R. Shikata K. Kataoka H.U. Takatsuka T. Miyamoto S. Sasaki M. et al.

Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes.

Diabetologia. 54: 965-978Oeseburg H. de Boer R.A. Buikema H. van der Harst P. van Gilst W.H. Silljé H.H.

Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A.

Arterioscler Thromb Vasc Biol. 30: 1407-1414Jia Y. Zheng Z. Guan M. et al.

Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells.

Exp Mol Med. 50: 1-13Joo K.W. Kim S. Ahn Sy et al.

Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney.

BMC Nephrol. 14: 98

留言 (0)

沒有登入
gif