Extracellular Vesicle Proteome of Breast Cancer Patients with and Without Cognitive Impairment Following Anthracycline-based Chemotherapy: An Exploratory Study

1. Chan, RJ, McCarthy, AL, Devenish, J, Sullivan, KA, Chan, A. Systematic review of pharmacologic and non-pharmacologic interventions to manage cognitive alterations after chemotherapy for breast cancer. Eur J Cancer. 2015;51:437-450.
Google Scholar | Crossref | Medline2. Hardy, SJ, Krull, KR, Wefel, JS, Janelsins, M. Cognitive changes in cancer survivors. Am Soc Clin Oncol Educ Book. 2018;38:795-806.
Google Scholar | Crossref | Medline3. Cheung, YT, Chui, WK, Chan, A. Neuro-cognitive impairment in breast cancer patients: pharmacological considerations. Crit Rev Oncol Hematol. 2012;83:99-111.
Google Scholar | Crossref | Medline | ISI4. Ng, T, Dorajoo, SR, Cheung, YT, et al. Distinct and heterogeneous trajectories of self-perceived cognitive impairment among Asian breast cancer survivors. Psychooncology. 2018;27:1185-1192.
Google Scholar | Crossref | Medline5. Cheung, YT, Shwe, M, Tan, YP, Fan, G, Ng, R, Chan, A. Cognitive changes in multiethnic Asian breast cancer patients: a focus group study. Ann Oncol. 2012;23:2547-2552.
Google Scholar | Crossref | Medline | ISI6. Kobayashi, LC, Cohen, HJ, Zhai, W, et al. Cognitive function prior to systemic therapy and subsequent well-being in older breast cancer survivors: longitudinal findings from the Thinking and Living with Cancer Study. Psychooncology. 2020;29:1051-1059.
Google Scholar | Crossref | Medline7. Barlow-Krelina, E, Chen, Y, Yasui, Y, et al. Consistent physical activity and future neurocognitive problems in adult survivors of childhood cancers: a report from the childhood cancer survivor study. J Clin Oncol. 2020;38:2041-2052.
Google Scholar | Crossref | Medline8. Bray, VJ, Dhillon, HM, Bell, ML, et al. Evaluation of a web-based cognitive rehabilitation program in cancer survivors reporting cognitive symptoms after chemotherapy. J Clin Oncol. 2017;35:217-225.
Google Scholar | Crossref | Medline9. Lowry, MC, Gallagher, WM, O’Driscoll, L. The role of exosomes in breast cancer. Clin Chem. 2015;61:1457-1465.
Google Scholar | Crossref | Medline10. Sadovska, L, Eglitis, J, Line, A. Extracellular vesicles as biomarkers and therapeutic targets in breast cancer. Anticancer Res. 2015;35:6379-6390.
Google Scholar | Medline11. Thompson, AG, Gray, E, Heman-Ackah, SM, et al. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol. 2016;12:346-357.
Google Scholar | Crossref | Medline12. Olson, B, Marks, DL. Pretreatment cancer-related cognitive impairment-mechanisms and outlook. Cancers (Basel). 2019;11:687.
Google Scholar | Crossref13. Koh, YQ, Tan, CJ, Toh, YL, et al. Role of exosomes in cancer-related cognitive impairment. Int J Mol Sci. 2020;21:2755.
Google Scholar | Crossref14. Tominaga, N, Kosaka, N, Ono, M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.
Google Scholar | Crossref | Medline | ISI15. Aharon, A, Sabbah, A, Ben-Shaul, S, et al. Chemotherapy administration to breast cancer patients affects extracellular vesicles thrombogenicity and function. Oncotarget. 2017;8:63265-63280.
Google Scholar | Crossref | Medline16. Aharon, A, Sabbah, AR, Issman, L, et al. Effects of low- and high-dose chemotherapy agents on thrombogenic properties of extracellular vesicles derived from breast cancer cell lines. Thromb Haemost. 2018;118:480-489.
Google Scholar | Crossref | Medline17. Baulch, JE, Acharya, MM, Allen, BD, et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc Natl Acad Sci U S A. 2016;113:4836-4841.
Google Scholar | Crossref | Medline18. Smith, SM, Giedzinski, E, Angulo, MC, et al. Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Transl Med. 2020;9:93-105.
Google Scholar | Crossref | Medline19. Toh, YL, Wang, C, Ho, HK, Chan, A. Distinct cytokine profiles across trajectories of self-perceived cognitive impairment among early-stage breast cancer survivors. J Neuroimmunol. 2020;342:577196.
Google Scholar | Crossref | Medline20. Toh, YL, Shariq Mujtaba, J, Bansal, S, et al. Prechemotherapy levels of plasma dehydroepiandrosterone and its sulfated form as predictors of cancer-related cognitive impairment in patients with breast cancer receiving chemotherapy. Pharmacotherapy. 2019;39:553-563.
Google Scholar | Crossref | Medline21. Cheow, ES, Cheng, WC, Lee, CN, de Kleijn, D, Sorokin, V, Sze, SK. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for Myocardial Ischemic (MI) injury. Mol Cell Proteomics. 2016;15:2628-2640.
Google Scholar | Crossref | Medline22. Gallart-Palau, X, Serra, A, Hase, Y, et al. Brain-derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer’s disease. Brain Pathol. 2019;29:593-605.
Google Scholar | Crossref | Medline23. Paramasivan, S, Adav, SS, Ngan, SC, et al. Serum albumin cysteine trioxidation is a potential oxidative stress biomarker of type 2 diabetes mellitus. Sci Rep. 2020;10:6475.
Google Scholar | Crossref | Medline24. Adav, SS, Park, JE, Sze, SK. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol Brain. 2019;12:8.
Google Scholar | Crossref | Medline25. Rouillard, AD, Gundersen, GW, Fernandez, NF, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). 2016;2016:baw100.
Google Scholar | Crossref | Medline26. Davis, AP, Grondin, CJ, Johnson, RJ, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2017;45:D972-D978.
Google Scholar | Crossref | Medline27. Vizcaino, JA, Deutsch, EW, Wang, R, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32:223-226.
Google Scholar | Crossref | Medline | ISI28. de Menezes-Neto, A, Saez, MJ, Lozano-Ramos, I, et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles. 2015;4:27378.
Google Scholar | Crossref | Medline | ISI29. Sanjurjo, L, Aran, G, Roher, N, Valledor, AF, Sarrias, MR. AIM/CD5L: a key protein in the control of immune homeostasis and inflammatory disease. J Leukoc Biol. 2015;98:173-184.
Google Scholar | Crossref | Medline30. Kim, WK, Hwang, HR, Kim, DH, et al. Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers. Exp Mol Med. 2008;40:677-685.
Google Scholar | Crossref | Medline31. Rosa-Fernandes, L, Rocha, VB, Carregari, VC, Urbani, A, Palmisano, G. A perspective on extracellular vesicles proteomics. Front Chem. 2017;5:102.
Google Scholar | Crossref | Medline32. Pankratov, Y, Lalo, U, Krishtal, OA, Verkhratsky, A. P2X receptors and synaptic plasticity. Neuroscience. 2009;158:137-148.
Google Scholar | Crossref | Medline | ISI33. Wolf, M, Zimmermann, AM, Gorlich, A, et al. ADF/Cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex. 2015;25:2863-2875.
Google Scholar | Crossref | Medline34. Musardo, S, Marcello, E, Gardoni, F, Di Luca, M. ADAM10 in synaptic physiology and pathology. Neurodegener Dis. 2014;13:72-74.
Google Scholar | Crossref | Medline35. Gorlich, A, Wolf, M, Zimmermann, AM, et al. N-cofilin can compensate for the loss of ADF in excitatory synapses. PLoS One. 2011;6:e26789.
Google Scholar | Crossref | Medline36. Schuck, F, Wolf, D, Fellgiebel, A, Endres, K. Increase of alpha-secretase ADAM10 in platelets along cognitively healthy aging. J Alzheimers Dis. 2016;50:817-826.
Google Scholar | Crossref | Medline37. Endres, K, Deller, T. Regulation of alpha-secretase ADAM10 In vitro and in vivo: genetic, epigenetic, and protein-based mechanisms. Front Mol Neurosci. 2017;10:56.
Google Scholar | Crossref | Medline38. Lalo, U, Palygin, O, Verkhratsky, A, Grant, SG, Pankratov, Y. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep. 2016;6:33609.
Google Scholar | Crossref | Medline39. Krucker, T, Siggins, GR, Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci U S A. 2000;97:6856-6861.
Google Scholar | Crossref | Medline | ISI40. Chen, LY, Rex, CS, Casale, MS, Gall, CM, Lynch, G. Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci. 2007;27:5363-5372.
Google Scholar | Crossref | Medline | ISI41. Kramar, EA, Chen, LY, Brandon, NJ, et al. Cytoskeletal changes underlie estrogen’s acute effects on synaptic transmission and plasticity. J Neurosci. 2009;29:12982-12993.
Google Scholar | Crossref | Medline | ISI42. Zarrinmayeh, H, Territo, PR. Purinergic receptors of the central nervous system: biology, PET ligands, and their applications. Mol Imaging. 2020;19:1536012120927609.
Google Scholar | SAGE Journals | ISI43. Barone, E, Mosser, S, Fraering, PC. Inactivation of brain Cofilin-1 by age, Alzheimer’s disease and gamma-secretase. Biochim Biophys Acta. 2014;1842:2500-2509.
Google Scholar | Crossref | Medline | ISI44. Marcello, E, Borroni, B, Pelucchi, S, Gardoni, F, Di Luca, M. ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer’s disease. Expert Opin Ther Targets. 2017;21:1017-1026.
Google Scholar | Crossref | Medline45. Brummer, T, Muller, SA, Pan-Montojo, F, et al. NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer’s disease. EMBO Mol Med. 2019;11:e9695.
Google Scholar | Crossref | Medline46. Hausheer, FH, Schilsky, RL, Bain, S, Berghorn, EJ, Lieberman, F. Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin Oncol. 2006;33:15-49.
Google Scholar | Crossref | Medline | ISI47. Bandos, H, Melnikow, J, Rivera, DR, et al. Long-term peripheral neuropathy in breast cancer patients treated with adjuvant chemotherapy: NRG Oncology/NSABP B-30. J Natl Cancer Inst. 2018;110:djx162.
Google Scholar | Crossref48. De Gasperi, R, Friedrich, VL, Perez, GM, et al. Transgenic rescue of Krabbe disease in the twitcher mouse. Gene Ther. 2004;11:1188-1194.
Google Scholar | Crossref | Medline49. Rafi, MA, Zhi Rao, H, Passini, MA, et al. AAV-mediat

留言 (0)

沒有登入
gif