Achu AL, Joseph S, Aju CD, Mathai J (2021) Preliminary analysis of a catastrophic landslide event on 6 August 2020 at Pettimudi, Kerala State, India. Landslides 18:1459–1463. https://doi.org/10.1007/s10346-020-01598-x
Achu AL, Thomas J, Aju CD, Vijith H, Gopinath G (2024) Redefining landslide susceptibility under extreme rainfall events using deep learning. Geomorphology 448:109033. https://doi.org/10.1016/j.geomorph.2023.109033
Agrawal R, Dixit A (2022) Landslide susceptibility assessment using frequency ratio and Shannon entropy with multi-criteria decision analysis for Meghalaya, India. J Appl Remote Sens 16(3):035502. https://doi.org/10.1080/27669645.2022.2101256
Ajin RS, Nandakumar D, Rajaneesh A, Oommen T, Ali YP, Sajinkumar KS (2022) The tale of three landslides in the Western Ghats, India: lessons to be learnt. Geoenviron Disasters 9(1):16. https://doi.org/10.1186/s40677-022-00218-1
Alsabhan S, Alajlan S, Alotaibi A (2022) Landslide susceptibility assessment using weight of evidence, frequency ratio, and information value in the Himalayan range along Kasauli-Parwanoo road corridor. Nat Hazards 114(3):1613–1636. https://doi.org/10.1016/j.jksus.2021.101759
Alaska Satellite Facility (ASF) (2020) ALOS PALSAR—digital elevation model (12.5 m Spatial Resolution). ALOS DEM retrieved on November 25, 2020 and December 21, 2020. https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction
Chunga IC, Mugaruka TB, Ilombe GM, Nzolang C, Mwanjalolo M, Imwangana FM (2024) Landslide susceptibility assessment using frequency ratio: a case study of Kiliba (Sud-Kivu/DR Congo). East Afr J Environ Nat Resour 7(1):183–199. https://doi.org/10.37284/eajenr.7.1.2008
Dahal RK, Hasegawa S, Yamanaka M, Dhakal S, Bhandary NP, Yatabe R (2009) Comparative analysis of contributing parameters for rainfall-triggered landslides in the Lesser Himalaya of Nepal. Environ Geol 58(3):567–586. https://doi.org/10.1007/s00254-008-1531-6
Dikshit A, Satyam N, Pradhan B (2020) Estimating rainfall threshold and temporal probability for landslide occurrences in Darjeeling Himalayas. Geosci J 24:225–233. https://doi.org/10.1007/s12303-020-0001-3
Fabbri AG, Chung CJ (2012) A spatial prediction modeling system for mineral potential and natural hazard mapping. Proceedings of EUREGEO2012, II, 756–757
Forrester DG (1980) Two landslides on New South Wales Highways, Proceedings, International Symposium on Landslides, (ISL 1980), April 7-11, New Delhi, Vol (1):113-144
Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard 18(8):2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
George KA, Sunil PS, Anish AU, Goinath G, Mini VK (2023) A pilot assessment of the fatal landslide on 29 August 2022 in Kudayathoor, Idukki, Kerala. J Geol Soc India 99:141–144. https://doi.org/10.1007/s12594-023-2277-1
Ghosh JG, De Wit REM, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zone in Southern Granulite Terrain, India, with implications for Gondwana studies. Tectonics 23:TC3006. https://doi.org/10.1029/2002
Gopinath G, Achu AL, Bhadran A, Girishbai D, Pulpadan YA (2024) Preliminary report of the most disastrous landslide on 30th July 2024 Wayanad Plateau, Kerala, India. J Geol Soc India. https://doi.org/10.17491/jgsi/2024/174
Gupta P, Banerjee A, Gupta NJ (2020) Spatio temporal study on changing trend of landuse and landcover pattern in Munnar area, Idukki district, Western Ghats, India. Indian Journal of Geo-Marine Sciences. http://nopr.niscpr.res.in/handle/123456789/54930
Jaiswal P, Ghosh T, Ghosh S, Bhowmik S, Praveen KR, Kumar A, Srivastava AK (2016) Landslide compendium of Southern parts of Western Ghats, Spl. Publication no. 108, Geological Survey of India, pp 178
Jones S, Kasthurba AK, Bhagyanathan A, Binoy BV (2021) Landslide susceptibility investigation for Idukki district of Kerala using regression analysis and machine learning. Arab J Geosci 14(10):838. https://doi.org/10.1007/s12517-021-07156-6
Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366. https://doi.org/10.1016/j.enggeo.2006.03.004
Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set-based approach for integrating thematic maps for landslide susceptibility zonation. Georisk: Assess Manag Risk Eng Syst Geohazards 3(1):30–43. https://doi.org/10.1080/17499510802541417
Kanungo DP, Singh R, Dash RK (2020) Field observations and lessons learnt from the 2018 landslide disasters in Idukki District, Kerala, India. Curr Sci 119:1797–1806. https://doi.org/10.18520/cs/v119/i11/1797-1806
Karaman K, Gokceoglu C, Aksoy H (2022) Landslide susceptibility assessment using frequency ratio method: a case study of Karaburun Peninsula. Turkey Eng Geol 290:106240
Keaton JR, Wartman J, Anderson S, Benoît J, deLaChapelle J, Gilbert R, Montgomery DR (2014) “The 22 March 2014Oso landslide, Snohomish County, Washington.”. http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&id=30
Kirschbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam A (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575. https://doi.org/10.1007/s11069-009-9401-4
Kuriakose SL, Sankar G, Muraleedharan C (2009) History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environ Geol 57(7):1553–1568. https://doi.org/10.1007/s00254-008-1431-9
Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41. https://doi.org/10.1007/s10346-006-0047-y
Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. https://doi.org/10.1007/s00254-005-1228-z
Martha TR, Roy P, Khanna K, Mrinalni K, Kumar KV (2019) Landslides mapped using satellite data in the Western Ghats of India after excess rainfall during August 2018. Curr Sci 117:804
Meena SR, Ghorbanzadeh O, Van Westen CJ, Nachappa TG, Blaschke T, Singh RP, Sarkar R (2021) Rapid mapping of landslides in the Western Ghats (India) triggered by 2018 extreme monsoon rainfall using a deep learning approach. Landslides 18:1937–1950. https://doi.org/10.1007/s10346-020-01602-4
Meten M, Bhandary NP, Yatabe R (2015) GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. J Mountain Sci 12:1355–1372. https://doi.org/10.1007/s11629-015-3464-3
Nair MM, Anilkumar PS (1989) Detailed studies of the acid intrusive of Kerala. Rec Geol Surv India 122:203–206
Nwazelibe VE, Egbueri JC, Unigwe CO, Agbasi JC, Ayejoto DA, Abba SI (2023) GIS-based landslide susceptibility mapping of Western Rwanda: an integrated artificial neural network, frequency ratio, and Shannon entropy approach. Environ Earth Sci 82(19):439. https://doi.org/10.1007/s12665-023-11134-4
Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in a tropical, hilly area. Comput Geosci 37:1264–1276. https://doi.org/10.1016/j.cageo.2010.10.012
“Pettimudi Landslide (6th August 2020), Idukki district, Kerala”, dated 28.08.2020 Map No: 20202/03, NRSC/ISRO, Hyderabad
Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15
Rahmati O, Mousavi SJ, Rezazadeh M (2016) Landslide susceptibility mapping using frequency ratio and overlay analysis: a case study of Rudraprayag, Uttarakhand, India. Geomat Nat Haz Risk 7(2):406–424. https://doi.org/10.1080/10106049.2015.1041559
Rajesh HM, Santosh M (1996a) Alkaline magmatism in Peninsular India; In The Archean and Proterozoic terrains in southern India within East Gondwana (eds) Santosh M and Yoshida M, Gondwana Research Memoir, 3, pp 91–115
Rajesh HM, Santosh M, Yoshida M (1996b) The felsic magmatic province in East Gondwana: Implications for Pan-African tectonics. J SE Asian Earth Sci 14(3–4):275–291
Ramasamy S, Gunasekaran S, Saravanavel JR, Melwyn Joshua R, Rajaperumal R, Kathiravan KP, Muthukumar M (2021) Geomorphology and landslide proneness of Kerala, India a Geospatial study. Landslides 18:1245–1258. https://doi.org/10.1007/s10346-020-01562-9
Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742. https://doi.org/10.1007/s12517-012-0807-z
Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 23(2):357–369. https://doi.org/10.1080/01431160010014260
Sajinkumar KS, Anbazhagan S (2015) Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India. Nat Hazards 75:953–973. https://doi.org/10.1007/s11069-014-1358-2
Sajinkumar KS, Oommen T (2020) Rajamala landslide: continuation of a never-ending landslide series. J Geol Soc India 96:310–310. https://doi.org/10.1007/s12594-020-1552-7
Sajinkumar KS, Anbazhagan S, Pradeepkumar AP, Rani VR (2011) Weathering and landslide occurrences in Western Ghats, Kerala. J Geol Soc India 78(3):249–257. https://doi.org/10.1007/s12594-011-0089-1
Sajinkumar KS, Asokakumar MR, Sajeev R, Venkatraman NV (2017) A potential headward retreat landslide site at Munnar Kerala. J Geol Soc India 89:183–191. https://doi.org/10.1007/s12594-017-0582-2
留言 (0)