Boswellia sp. oleogum resins: high-performance thin-layer chromatography‒effect-directed pancreatic lipase inhibition profiles and molecular docking studies

WHO (2024) Obesity and overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 19 Aug 2024

Yi X, He Y, Gao S, Li M (2024) A review of the application of deep learning in obesity: from early prediction aid to advanced management assistance. Diabetes Metab Syndr Clin Res Rev 18:103000. https://doi.org/10.1016/j.dsx.2024.103000

Article  Google Scholar 

Archer E, Lavie CJ, Hill JO (2018) The contributions of “diet”, “genes”, and physical activity to the etiology of obesity: Contrary evidence and consilience. Prog Cardiovasc Dis 61:89–102. https://doi.org/10.1016/j.pcad.2018.06.002

Article  PubMed  Google Scholar 

Speakman JR (2022) Organ cross-talk and the aetiology of obesity—an impasse. J Holist Integr Pharm 3:1–6. https://doi.org/10.1016/S2707-3688(23)00060-2

Article  Google Scholar 

Gupta S, Chen M (2023) Medical management of obesity. Clin Med 23:323–329. https://doi.org/10.7861/clinmed.2023-0183

Article  Google Scholar 

Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL (2012) Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344:d7771. https://doi.org/10.1136/bmj.d7771

Article  PubMed  PubMed Central  Google Scholar 

Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, Wharton S, Yokote K, Zeuthen N, Kushner RF, STEP 1 Study Group (2021) Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 384:989–1002. https://doi.org/10.1056/NEJMoa2032183

Shetty R, Basheer FT, Poojari PG, Thunga G, Chandran VP, Acharya LD (2022) Adverse drug reactions of GLP-1 agonists: a systematic review of case reports. Diabetes Metab Syndr Clin Res Rev 16:102427. https://doi.org/10.1016/j.dsx.2022.102427

Article  Google Scholar 

Smits MM, Van Raalte DH (2021) Safety of semaglutide. Front Endocrinol 12:645563. https://doi.org/10.3389/fendo.2021.645563

Article  Google Scholar 

Xiao M, Wang Z, Li C, Zhang K, Hou Z, Sun S, Yang L (2024) Recent advances in drug delivery systems based on natural and synthetic polymers for treating obesity. Int J Biol Macromol 260:129311. https://doi.org/10.1016/j.ijbiomac.2024.129311

Article  PubMed  Google Scholar 

Cao Q, Mei S, Mehmood A, Sun Y, Chen X (2024) Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: a mechanistic study. Food Chem 444:138514. https://doi.org/10.1016/j.foodchem.2024.138514

Article  PubMed  Google Scholar 

Eryaman Z, Hizal J, Yılmazoğlu M, Daban U, Mert H, Kanmaz N (2024) The performance of hypochlorous acid modified Ag nanoparticle-based assay in the determination of total antioxidant capacity of Boswellia serrata and Aronia. Talanta 267:125218. https://doi.org/10.1016/j.talanta.2023.125218

Article  PubMed  Google Scholar 

Hamadjia A, Mbomo REA, Minko SE, Ntchapda F, Mingoas JPK, Nnanga N (2024) Antioxidant and anti-inflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxan-induced diabetic rats. Metab Open 21:100278. https://doi.org/10.1016/j.metop.2024.100278

Article  Google Scholar 

Laev SS, Salakhutdinov NF (2015) Anti-arthritic agents: progress and potential. Bioorg Med Chem 23:3059–3080. https://doi.org/10.1016/j.bmc.2015.05.010

Article  PubMed  Google Scholar 

Pilkington K, Pilkington GJ (2022) Boswellia: systematically scoping the in vitro, in vivo and clinical research. Eur J Integr Med 56:102197. https://doi.org/10.1016/j.eujim.2022.102197

Article  Google Scholar 

Rahimi VB, Devin PR, Askari VR (2023) Boswellia serrata inhibits LPS-induced cardiotoxicity in H9C2 cells: investigating role of anti-inflammatory and antioxidant effects. Toxicon 229:107132. https://doi.org/10.1016/j.toxicon.2023.107132

Article  Google Scholar 

Rehman NU, Khan A, Al-Harrasi A, Hussain H, Wadood A, Riaz M, Al-Abri Z (2018) New α-glucosidase inhibitors from the resins of Boswellia species with structure–glucosidase activity and molecular docking studies. Bioorg Chem 79:27–33. https://doi.org/10.1016/j.bioorg.2018.04.020

Article  Google Scholar 

Zimmermann-Klemd AM, Reinhardt JK, Nilsu T, Morath A, Falanga CM, Schamel WW, Huber R, Hamburger M, Grundemann C (2020) Boswellia carteri extract and 3-O-acetyl-alpha-boswellic acid suppress T cell function. Fitoterapia 146:104694. https://doi.org/10.1016/j.fitote.2020.104694

Article  PubMed  Google Scholar 

Móricz AM, Ott PG, Häbe TT, Darcsi A, Böszörményi A, Alberti Á, Krüzselyi D, Csontos P, Beni S, Morlock GE (2016) Effect-directed discovery of bioactive compounds followed by highly targeted characterization, isolation, and identification, exemplarily shown for Solidago virgaurea. Anal Chem 88:8202–8209. https://doi.org/10.1021/acs.analchem.6b02007

Article  PubMed  Google Scholar 

Morlock G, Schwack W (2010) Hyphenations in planar chromatography. J Chromatogr A 1217:6600–6609. https://doi.org/10.1016/j.chroma.2010.04.058

Article  PubMed  Google Scholar 

Al-Harrasi A, Ali L, Ceniviva E, Al-Rawahi A, Hussain J, Hussain H, Rehman N, Abbas G, Al-Harrasi R (2013) Antiglycation and antioxidant activities and HPTLC analysis of Boswellia sacra oleogum resin: the sacred frankincense. Trop J Pharm Res 12:597–602. https://doi.org/10.4314/tjpr.v12i4.23

Article  Google Scholar 

Vaykole AM, Nirmal SA, Jadhav RS, Pattan SR (2014) Development and validation of HPTLC method to detect curcumin, piperine, and boswellic acid in polyherbal transdermal patch. J Liq Chromatogr Relat Technol 37:367–378. https://doi.org/10.1080/10826076.2012.745141

Article  Google Scholar 

Mukadam S, Ghule C, Girme A, Shinde VM, Hingorani L, Mahadik KR (2023) A simple HPTLC approach of quantification of serratol and tirucallic acid with boswellic acids in Boswellia serrata by validated densitometric method with MS/MS characterization. J Chromatogr Sci 61:953–962. https://doi.org/10.1093/chromsci/bmad012

Article  PubMed  Google Scholar 

Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM (2023) Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in disease management. Sci Rep 13:13398. https://doi.org/10.1038/s41598-023-40160-2

Article  PubMed  PubMed Central  Google Scholar 

Jaradat N, Hawash M, Qaoud MT, Al-Maharik N, Qadi M, Hussein F, Issa L, Saleh A, Saleh L, Jadallah A (2024) Biological, phytochemical, and molecular docking characteristics of Laurus nobilis L. fresh leaves essential oil from Palestine. BMC Complement Med Ther 24:223. https://doi.org/10.1186/s12906-024-04528-9

Article  PubMed  PubMed Central  Google Scholar 

Ketprayoon T, Noitang S, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A (2021) An in vitro study of lipase inhibitory peptides obtained from de-oiled rice bran. RSC Adv 11:18915–18929. https://doi.org/10.1039/D1RA01411K

Article  PubMed  PubMed Central  Google Scholar 

Luo S, Gill H, Dias DA, Li M, Hung A, Nguyen LT, Lenon GB (2019) The inhibitory effects of an eight-herb formula (RCM-107) on pancreatic lipase: enzymatic, HPTLC profiling, and in silico approaches. Heliyon 5:e02453. https://doi.org/10.1016/j.heliyon.2019.e02453

Article  PubMed  PubMed Central  Google Scholar 

Orhan N, Temiz B, Ağalar HG, İşcan G (2022) Boswellia serrata, oleogum resins and extracts, laboratory guidance document. ABC Botanical Adulterants Prevention Program

Tang J, Zhou J, Tang Q, Wu T, Cheng Z (2016) A new TLC bioautographic assay for qualitative and quantitative estimation of lipase inhibitors. Phytochem Anal 27:5–12. https://doi.org/10.1002/pca.2581

Article  PubMed  Google Scholar 

Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC (1996) Lipase activation by nonionic detergents: the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem 271:18007–18016. https://doi.org/10.1074/jbc.271.30.18007

Article  PubMed  Google Scholar 

Paul M, Brüning G, Bergmann J, Jauch J (2012) A thin-layer chromatography method for the identification of three different olibanum resins (Boswellia serrata, Boswellia papyrifera, and Boswellia carterii, respectively, Boswellia sacra). Phytochem Anal 23:184–189. https://doi.org/10.1002/pca.1341

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif