Exploring the antibacterial and anti-biofilm activity of two Iranian medical-grade kinds of honey on multidrug-resistant Pseudomonas aeruginosa

Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JA, Sommer LM, Molin S, Johansen HK. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol. 2021;19(5):331–42.

Article  CAS  PubMed  Google Scholar 

Zakhour J, Sharara SL, Hindy J-R, Haddad SF, Kanj SS. Antimicrobial treatment of Pseudomonas aeruginosa severe sepsis. Antibiotics. 2022;11(10):1432.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos ED, Jiménez CM, del Río-Carbajo L, Vidal-Cortés P. Treatment of severe multi-drug resistant Pseudomonas aeruginosa infections. Med Intensiva (Engl Ed). 2022;46:508–20.

Google Scholar 

Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol. 2013;4:258.

Article  PubMed  PubMed Central  Google Scholar 

Shariati A, Azimi T, Ardebili A, Chirani A, Bahramian A, Pormohammad A, Sadredinamin M, Erfanimanesh S, Bostanghadiri N, Shams S. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2018;21:75–80.

Article  CAS  PubMed  Google Scholar 

Sinha M, Ghosh N, Wijesinghe DS, Mathew-Steiner SS, Das A, Singh K, El Masry M, Khanna S, Inoue H, Yamazaki K. Pseudomonas aeruginosa theft biofilm require host lipids of cutaneous wound. Ann Surg. 2023;277(3):e634–47.

Assefa M, Amare A. Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect Drug Resist. 2022;15:5061–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg E. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407(6805):762–4.

Article  CAS  PubMed  Google Scholar 

Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9.

Article  CAS  PubMed  Google Scholar 

Pattamayutanon P, Angeli S, Thakeow P, Abraham J, Disayathanoowat T, Chantawannakul P. Biomedical activity and related volatile compounds of Thai honeys from 3 different honeybee species. J Food Sci. 2015;80(10):M2228–40.

Article  CAS  PubMed  Google Scholar 

Boukraâ L. Honey in traditional and modern medicine. USA: CRC Press, Taylor & Francis Group; 2023.

Holubová A, Chlupáčová L, Krocová J, Cetlová L, Peters LJ, Cremers NA, Pokorná A. The use of medical grade honey on infected chronic diabetic foot ulcers—a prospective case-control study. Antibiotics. 2023;12(9):1364.

Article  PubMed  PubMed Central  Google Scholar 

Hermanns R, Mateescu C, Thrasyvoulou A, Tananaki C, Wagener FA, Cremers NA. Defining the standards for medical grade honey. J Apic Res. 2020;59(2):125–35.

Article  Google Scholar 

Cremers N, Belas A, Santos Costa S, Couto I, De Rooster H, Pomba C. In vitro antimicrobial efficacy of two medical grade honey formulations against common high-risk meticillin-resistant staphylococci and Pseudomonas spp. pathogens. Vet Dermatol. 2020;31(2):90-e10.

Article  PubMed  Google Scholar 

Smaropoulos E, Cremers NA. Medical grade honey for the treatment of paediatric abdominal wounds: a case series. J Wound Care. 2020;29(2):94–9.

Article  PubMed  Google Scholar 

Nair HK, Tatavilis N, Pospíšilová I, Kučerová J, Cremers NA. Medical-grade honey kills antibiotic-resistant bacteria and prevents amputation in diabetics with infected ulcers: a prospective case series. Antibiotics. 2020;9(9):529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsavea E, Mossialos D. Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds. J Apic Res. 2019;58(5):756–63.

Article  Google Scholar 

Pavel M, Ristić M, Stević T. Essential oils of Thymus pulegioides and Thymus glabrescens from Romania: chemical composition and antimicrobial activity. J Serb Chem Soc. 2010;75(1):27–34.

Article  CAS  Google Scholar 

Vahedi V, Hedayat Evrigh N, Behroozlak M, Dirandeh E. Antioxidant effects of Thyme (Thymus vulgaris) extract on ram sperm quality during cryopreservation. Iran J Appl Anim Sci. 2018;8(2):263–9.

CAS  Google Scholar 

Alissandrakis E, Tarantilis PA, Pappas C, Harizanis PC, Polissiou M. Ultrasound-assisted extraction gas chromatography–mass spectrometry analysis of volatile compounds in unifloral thyme honey from Greece. Eur Food Res Technol. 2009;229:365–73.

Article  CAS  Google Scholar 

Safarian N, Shakib P, Rajabzadeh A, Zarei L. The effect of thyme honey on the histopathological changes of the testis in relation to the side effects of Valproic acid in adult male Wistar rats. Andrologia. 2023;2023:9913454.

Article  Google Scholar 

Zacchino SA, Butassi E, Di Liberto M, Raimondi M, Postigo A, Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine. 2017;37:27–48.

Article  CAS  PubMed  Google Scholar 

Hayes A, Markovic B. Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part 1. Antimicrobial activity and in vitro cytotoxicity. Food Chem Toxicol. 2002;40(4):535–43.

Article  CAS  PubMed  Google Scholar 

Tawfik NO, Al-Haliem SM, Al-Ani WN. Evaluation of the antibacterial activity of citrus juices: an in vitro study. Al-Rafidain Dent J. 2010;10(2):376–82.

Article  Google Scholar 

Escriche I, Juan-Borrás M, Visquert M, Valiente JM. An overview of the challenges when analysing pollen for monofloral honey classification. Food Control. 2023;143:109305.

Article  Google Scholar 

Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. Legislation of honey criteria and standards. J Apic Res. 2018;57(1):88–96.

Article  Google Scholar 

Decision G. Identification of Greek monofloral pine, fir, chestnut, erica, thyme, citrus, cotton and helianthus honeys. Greece: Greek Ministry of Agricultural and Food Development Athens; 2005.

Google Scholar 

Abdelhady ASM, Darwish NM, Abdel-Rahman SM, El Magd NMA. The combined antimicrobial activity of citrus honey and fosfomycin on multidrug resistant Pseudomonas aeruginosa isolates. AIMS Microbiol. 2020;6(2):162.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almasaudi SB, Al-Nahari AA, El Sayed M, Barbour E, Al Muhayawi SM, Al-Jaouni S, Azhar E, Qari M, Qari YA, Harakeh S. Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J Biol Sci. 2017;24(6):1255–61.

Article  CAS  PubMed  Google Scholar 

Aburayyan WS, Seder N, Al-fawares OL, Fararjeh A, Majali IS, Al-Hajaya Y. Characterization of Antibiofilm and Antimicrobial Effects of Trigona Stingless Bee Honey Compared to Stinging Bee Centaurea hyalolepis and Citrus Honeys. J Evid Based Integr Med. 2024;29(4):2515690X241271978.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devi A, Jangir J, Anu-Appaiah K. Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India. Food Res Int. 2018;107:216–26.

Article  CAS  PubMed  Google Scholar 

Gao K, Henning SM, Niu Y, Youssefian AA, Seeram NP, Xu A, Heber D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem. 2006;17(2):89–95.

Article  CAS  PubMed  Google Scholar 

Rodriguez I, Salud S, Hortensia G, Luis UJ, Jodral M. Characterisation of Sierra Morena citrus blossom honey (Citrus sp). Int J Food Sci Technol. 2010;45(10):2008–15.

Article  CAS  Google Scholar 

Ferreres F, Giner JM, Tomás-Barberán FA. A comparative study of hesperetin and methyl anthranilate as markers of the floral origin of citrus honey. J Sci Food Agric. 1994;65(3):371–2.

Article  CAS  Google Scholar 

Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO. Quality, composition and health-protective properties of citrus honey: a review. Food Res Int. 2021;143:110268.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif