WHO COVID-19 Dashboard (World Health Organization, 2024); https://covid19.who.int/
Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286.e8 (2023).
CAS PubMed PubMed Central Google Scholar
Tracking of hCoV-19 Variants (GISAID, 2024); https://gisaid.org/hcov19-variants/
Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).
CAS PubMed PubMed Central Google Scholar
Alam, M. S. Insight into SARS-CoV-2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon 9, e13285 (2023).
CAS PubMed PubMed Central Google Scholar
Emmelot, M. E. et al. SARS-CoV-2 Omicron BA.4/BA.5 mutations in spike leading to T cell escape in recently vaccinated individuals. Viruses 15, 101 (2022).
PubMed PubMed Central Google Scholar
Hamelin, D. J. et al. The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA-supertype-dependent manner. Cell Syst. 13, 143–157.e3 (2022).
Stanevich, O. V. et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nat. Commun. 14, 149 (2023).
CAS PubMed PubMed Central Google Scholar
Zhang, H. et al. Profiling CD8+ T cell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Rep. 36, 109708 (2021).
CAS PubMed PubMed Central Google Scholar
Sette, A., Sidney, J. & Grifoni, A. Pre-existing SARS-2-specific T cells are predicted to cross-recognize BA.2.86. Cell Host Microbe 32, 19–24 (2024).
Müller, T. R. et al. Memory T cells effectively recognize the SARS-CoV-2 hypermutated BA.2.86 variant. Cell Host Microbe 32, 156–161 (2024).
Nesamari, R. et al. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 32, 162–169 (2024).
CAS PubMed PubMed Central Google Scholar
Deng, S. et al. Structural insights into immune escape at killer T cell epitope by SARS-CoV-2 Spike Y453F variants. J. Biol. Chem. 300, 107563 (2024).
CAS PubMed PubMed Central Google Scholar
Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).
PubMed PubMed Central Google Scholar
Middleton, D. et al. HLA class I allele distribution of a Hong Kong Chinese population based on high-resolution PCR-SSOP typing. Tissue Antigens 63, 555–561 (2004).
Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984).
Tsao, Y.-P. et al. HLA-A*0201 T cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins. Biochem. Biophys. Res. Commun. 344, 63–71 (2006).
CAS PubMed PubMed Central Google Scholar
Ohno, S. et al. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine 27, 3912–3920 (2009).
CAS PubMed PubMed Central Google Scholar
Nelde, A. et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).
Szeto, C. et al. The presentation of SARS-CoV-2 peptides by the common HLA-A*02:01 molecule. iScience 24, 102096 (2021).
CAS PubMed PubMed Central Google Scholar
Choy, C. et al. SARS-CoV-2 infection establishes a stable and age-independent CD8+ T cell response against a dominant nucleocapsid epitope using restricted T cell receptors. Nat. Commun. 14, 6725 (2023).
CAS PubMed PubMed Central Google Scholar
Du, P. et al. The omicron BA.2.86 subvariant as a new serotype of SARS-CoV-2. Lancet Microbe 5, e516 (2024).
Yang, S. et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 24, e70–e72 (2024).
He, Q. et al. Neutralization of EG.5, EG.5.1, BA.2.86, and JN.1 by antisera from dimeric receptor-binding domain subunit vaccines and 41 human monoclonal antibodies. Med 5, 401–413.e4 (2024).
Zhang, L. et al. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 187, 596–608.e17 (2024).
Qu, P. et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. Cell 187, 585–595.e6 (2024).
CAS PubMed PubMed Central Google Scholar
Wang, L. et al. Fusogenicity of SARS-CoV-2 BA.2.86 subvariant and its sensitivity to the prokaryotic recombinant EK1 peptide. Cell Discov. 10, 6 (2024).
CAS PubMed PubMed Central Google Scholar
Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2, 100355 (2021).
CAS PubMed PubMed Central Google Scholar
Garcia-Valtanen, P. et al. SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Rep. Med. 3, 100651 (2022).
CAS PubMed PubMed Central Google Scholar
Quiñones-Parra, S. et al. Preexisting CD8+ T cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc. Natl Acad. Sci. USA 111, 1049–1054 (2014).
PubMed PubMed Central Google Scholar
Arrieta-Bolaños, E., Hernández-Zaragoza, D. I. & Barquera, R. An HLA map of the world: a comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front. Genet. 14, 866407 (2023).
PubMed PubMed Central Google Scholar
Gonzalez-Galarza, F. F. et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 48, D783–D788 (2020).
Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502 (2021).
CAS PubMed PubMed Central Google Scholar
Kumar, A. et al. Characterization of nucleocapsid (N) protein from novel coronavirus SARS-CoV-2. Preprint at ResearchGate https://www.researchgate.net/publication/341671040 (2020).
Chaurasia, P. et al. Structural basis of biased T cell receptor recognition of an immunodominant HLA-A2 epitope of the SARS-CoV-2 spike protein. J. Biol. Chem. 297, 101065 (2021).
CAS PubMed PubMed Central Google Scholar
Nguyen, T. H. O. et al. CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity 54, 1066–1082 (2021).
CAS PubMed PubMed Central Google Scholar
Wang, X. et al. Nonconserved epitopes dominate reverse preexisting T cell immunity in COVID-19 convalescents. Signal Transduct. Target. Ther. 9, 160 (2024).
PubMed PubMed Central Google Scholar
Swaminathan, S. et al. Ablation of CD8+ T cell recognition of an immunodominant epitope in SARS-CoV-2 Omicron variants BA.1, BA.2 and BA.3. Nat. Commun. 13, 6387 (2022).
PubMed PubMed Central Google Scholar
Dolton, G. et al. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell 185, 2936–2951.e19 (2022).
留言 (0)