T cell immune evasion by SARS-CoV-2 JN.1 escapees targeting two cytotoxic T cell epitope hotspots

WHO COVID-19 Dashboard (World Health Organization, 2024); https://covid19.who.int/

Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286.e8 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Tracking of hCoV-19 Variants (GISAID, 2024); https://gisaid.org/hcov19-variants/

Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Alam, M. S. Insight into SARS-CoV-2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon 9, e13285 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Emmelot, M. E. et al. SARS-CoV-2 Omicron BA.4/BA.5 mutations in spike leading to T cell escape in recently vaccinated individuals. Viruses 15, 101 (2022).

PubMed  PubMed Central  Google Scholar 

Hamelin, D. J. et al. The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA-supertype-dependent manner. Cell Syst. 13, 143–157.e3 (2022).

CAS  PubMed  Google Scholar 

Stanevich, O. V. et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nat. Commun. 14, 149 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H. et al. Profiling CD8+ T cell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Rep. 36, 109708 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Sette, A., Sidney, J. & Grifoni, A. Pre-existing SARS-2-specific T cells are predicted to cross-recognize BA.2.86. Cell Host Microbe 32, 19–24 (2024).

CAS  PubMed  Google Scholar 

Müller, T. R. et al. Memory T cells effectively recognize the SARS-CoV-2 hypermutated BA.2.86 variant. Cell Host Microbe 32, 156–161 (2024).

PubMed  Google Scholar 

Nesamari, R. et al. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 32, 162–169 (2024).

CAS  PubMed  PubMed Central  Google Scholar 

Deng, S. et al. Structural insights into immune escape at killer T cell epitope by SARS-CoV-2 Spike Y453F variants. J. Biol. Chem. 300, 107563 (2024).

CAS  PubMed  PubMed Central  Google Scholar 

Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).

PubMed  PubMed Central  Google Scholar 

Middleton, D. et al. HLA class I allele distribution of a Hong Kong Chinese population based on high-resolution PCR-SSOP typing. Tissue Antigens 63, 555–561 (2004).

CAS  PubMed  Google Scholar 

Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984).

CAS  PubMed  Google Scholar 

Tsao, Y.-P. et al. HLA-A*0201 T cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins. Biochem. Biophys. Res. Commun. 344, 63–71 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Ohno, S. et al. Synthetic peptides coupled to the surface of liposomes effectively induce SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in HLA-A*0201 transgenic mice. Vaccine 27, 3912–3920 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Nelde, A. et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).

PubMed  Google Scholar 

Szeto, C. et al. The presentation of SARS-CoV-2 peptides by the common HLA-A*02:01 molecule. iScience 24, 102096 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Choy, C. et al. SARS-CoV-2 infection establishes a stable and age-independent CD8+ T cell response against a dominant nucleocapsid epitope using restricted T cell receptors. Nat. Commun. 14, 6725 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Du, P. et al. The omicron BA.2.86 subvariant as a new serotype of SARS-CoV-2. Lancet Microbe 5, e516 (2024).

PubMed  Google Scholar 

Yang, S. et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 24, e70–e72 (2024).

CAS  PubMed  Google Scholar 

He, Q. et al. Neutralization of EG.5, EG.5.1, BA.2.86, and JN.1 by antisera from dimeric receptor-binding domain subunit vaccines and 41 human monoclonal antibodies. Med 5, 401–413.e4 (2024).

CAS  PubMed  Google Scholar 

Zhang, L. et al. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 187, 596–608.e17 (2024).

CAS  PubMed  Google Scholar 

Qu, P. et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. Cell 187, 585–595.e6 (2024).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, L. et al. Fusogenicity of SARS-CoV-2 BA.2.86 subvariant and its sensitivity to the prokaryotic recombinant EK1 peptide. Cell Discov. 10, 6 (2024).

CAS  PubMed  PubMed Central  Google Scholar 

Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2, 100355 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Garcia-Valtanen, P. et al. SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Rep. Med. 3, 100651 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Quiñones-Parra, S. et al. Preexisting CD8+ T cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc. Natl Acad. Sci. USA 111, 1049–1054 (2014).

PubMed  PubMed Central  Google Scholar 

Arrieta-Bolaños, E., Hernández-Zaragoza, D. I. & Barquera, R. An HLA map of the world: a comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front. Genet. 14, 866407 (2023).

PubMed  PubMed Central  Google Scholar 

Gonzalez-Galarza, F. F. et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 48, D783–D788 (2020).

CAS  PubMed  Google Scholar 

Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Kumar, A. et al. Characterization of nucleocapsid (N) protein from novel coronavirus SARS-CoV-2. Preprint at ResearchGate https://www.researchgate.net/publication/341671040 (2020).

Chaurasia, P. et al. Structural basis of biased T cell receptor recognition of an immunodominant HLA-A2 epitope of the SARS-CoV-2 spike protein. J. Biol. Chem. 297, 101065 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Nguyen, T. H. O. et al. CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity 54, 1066–1082 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. Nonconserved epitopes dominate reverse preexisting T cell immunity in COVID-19 convalescents. Signal Transduct. Target. Ther. 9, 160 (2024).

PubMed  PubMed Central  Google Scholar 

Swaminathan, S. et al. Ablation of CD8+ T cell recognition of an immunodominant epitope in SARS-CoV-2 Omicron variants BA.1, BA.2 and BA.3. Nat. Commun. 13, 6387 (2022).

PubMed  PubMed Central  Google Scholar 

Dolton, G. et al. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell 185, 2936–2951.e19 (2022).

留言 (0)

沒有登入
gif