Bioactivities of secondary metabolites of two actinomycetes Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, endophytes of two Indian medicinal herbs- Globba marantina L. and Selaginella kraussiana (Kunze) A. Braun

Ogunnigbo O, Nabiryo M, Atteh M, Muringu E, Olaitan OJ, Rutter V, Ashiru-Oredope D (2022) Exploring the antimicrobial stewardship educational needs of healthcare students and the potential of an antimicrobial prescribing app as an educational tool in selected African countries. Antibiotics 19(5):691. https://doi.org/10.3390/antibiotics11050691

Gönenç A, Hacışevki A, Tavil Y, Çengel A, Torun M (2013) Oxidative stress in patients with essential hypertension: a comparison of dippers and non-dippers. Eur J Intern Med 1;24(2):139 – 44. https://doi.org/10.1016/j.ejim.2012.08.016

Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32

Google Scholar 

Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9. https://doi.org/10.2307/1943154

Article  Google Scholar 

Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FM, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10(1):175–188. https://doi.org/10.1111/1751-7915.12467

Article  CAS  PubMed  Google Scholar 

Matsumoto A, Takahashi Y (2017) Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot 70(5):514–519. https://doi.org/10.1038/ja.2017.20

Article  CAS  Google Scholar 

Aamir M, Rai KK, Zehra A, Dubey MK, Samal S, Yadav M, Upadhyay RS (2020) Endophytic actinomycetes in bioactive compounds production and plant defense system. In Microbial endophytes (pp. 189–229). Woodhead Publishing https://doi.org/10.1016/B978-0-12-818734-0.00009-7

Selim MS, Abdelhamid SA, Mohamed SS (2021) Secondary metabolites and biodiversity of actinomycetes. JGEB 19(1):72. https://doi.org/10.1186/s43141-021-00156-9

Article  Google Scholar 

Kuncharoen N, Tanasupawat S (2022) Endophytic actinomycetes: secondary metabolites and genomic approaches. In Natural Products from Actinomycetes: Diversity, Ecology and Drug Discovery (pp. 363–391). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-6132-7_14

Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B (2023) Bioactive metabolites from terrestrial and marine actinimycetes. Molecules 28(15):5915. https://doi.org/10.3390/molecules28155915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anavadiya B, Chouhan S, Saraf M, Goswami D (2024) Exploring endophytic actinomycetes: a rich reservoir of diverse antimicrobial compounds for combatting global antimicrobial resistance. Microb 29:100110. https://doi.org/10.1016/j.microb.2024.100110

Article  Google Scholar 

Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. ALJMAO 108:267–289. https://doi.org/10.1007/s10482-015-0502-7

Article  PubMed  Google Scholar 

Peng QI, Zhi-Xiang FE, Jie-Wei TI, Zu-Chao LE, Lei WA, Zhi-Gang ZE, Yi-Wen CH, Yong-Qiang TI (2015) Diversity, bioactivities, and metabolic potentials of endophytic actinomycetes isolated from traditional medicinal plants in Sichuan, China. CJNM 13(12):942–953. https://doi.org/10.1016/S1875-5364(15)30102-3

Article  Google Scholar 

Roy S, Parvin R, Ghosh S, Bhattacharya S, Maity S, Banerjee D (2018) Occurrence of a novel tannase (tan B LP) in endophytic Streptomyces sp. AL1L from the leaf of Ailanthus Excelsa Roxb. 3 Biotech 8:1–8. https://doi.org/10.1007/s13205-017-1055-4

Article  Google Scholar 

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. MBE 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

Article  CAS  Google Scholar 

Singha K, Banerjee A, Pati BR, Das Mohapatra PK (2017) Eco-diversity, productivity and distribution frequency of mushrooms in Gurguripal Eco-forest, Paschim Medinipur, West Bengal, India. Curr Res Environm Appl Mycol 7(1):8–18. https://doi.org/10.5943/cream/7/1/2

Article  Google Scholar 

Mallick PH, Chakraborty SK (2018) Forest, wetland and biodiversity: revealing multi-faceted ecological services from ecorestoration of a degraded tropical landscape. Ecohydrol Hydrobiol 18(3):278–296. https://doi.org/10.1016/j.ecohyd.2018.04.002

Article  Google Scholar 

Setyawan AD (2009) Traditionally utilization of Selaginella; field research and literature review. Nus Biosci 1(3). https://doi.org/10.13057/nusbiosci/n010307

Shweta Singh SS, Rita Singh RS (2015) A review on endemic Indian resurrecting herb Selaginella Bryopteris (L.) Bak.‘Sanjeevani’. IJPSR 6(1):50. https://doi.org/10.13040/IJPSR.0975-8232.6

Article  Google Scholar 

Naznin S, Ferdous M, Uddin MS, Yeasmin F, Daula AS, Anwarul M (2019) Phytochemical investigation and evaluation of antioxidant activities of methanolic extract of Globba marantina leaves. J Med Plants Res 7(6):147–153

Google Scholar 

Menon AN, Dan M (2009) Chemical composition of essential oils of Globba species from South India. JEOR 21(1):59–60. https://doi.org/10.1080/10412905.2009.9700110

Nayak S, Jena AK, Mittal DK, Joshi D (2014) GC–MS analysis of phytoconstituents of some wild Zingiberaceae plants methanolic rhizome extracts. Res Plant Sci 2(1):1–5. https://doi.org/10.12691/plant-2-1-1

Article  Google Scholar 

Che DH, Yu JG (1986) Analysis on the chemical constituents of jiangnanjuanbai (Selaginella Moellendorffii Hieron). Chin Tradit Herb Drugs 17(4). https://doi.org/10.25135/rnp.222.20.11.1890

Lin LC, Chou CJ (2000) Three new biflavonoids from Selaginella Delicatula. Chin Pharm J 52(4):211–218. https://doi.org/10.1021/np990538m

Article  CAS  Google Scholar 

Hu MinFu HM, Yen MingHong YM, Liao JiuunWang LJ, Liu KunLong LK (2004) Hepatoprotective effects of the folk medicines of Yan-Kan-Tang 1 and Yan-Kan-Tang 2 on rats. Crop Environ Bioinfo 1:229–238

Google Scholar 

Swamy RC, Kunert O, Schühly W, Bucar F, Ferreira D, Rani VS, Kumar BR, Appa Rao AV (2006) Structurally unique biflavonoids from Selaginella chrysocaulos and Selaginella bryopteris. Chem Biodivers 3(4):405–414. https://doi.org/10.1002/cbdv.200690044

Article  CAS  PubMed  Google Scholar 

Li J, Wan DR, Chen KL (2007) RAPD analysis of 8 medicinal species of Selaginella. Zhong Yao Cai 30(4):403–406

CAS  PubMed  Google Scholar 

Xu JC, Liu XQ, Chen KL (2009) A new biflavonoid from Selaginella Labordei Hieron. Ex Christ. Chin Chem Lett 20(8):939–941. https://doi.org/10.1016/j.cclet.2009.03.046

Article  CAS  Google Scholar 

Li J, Lei X, Chen KL (2014) Comparison of cytotoxic activities of extracts from Selaginella species. Pharmacogn Mag 10(40):529–535. https://doi.org/10.4103/0973-1296.141794

Article  PubMed  PubMed Central  Google Scholar 

Adnan M, Siddiqui AJ, Arshad J, Hamadou WS, Awadelkareem AM, Sachidanandan M, Patel M (2021) Evidence-based medicinal potential and possible role of Selaginella in the prevention of modern chronic diseases: Ethnopharmacological and ethnobotanical perspective. Rec Nat Prod 15(5):355. https://doi.org/10.25135/rnp.222.20.11.1890

Article  CAS  Google Scholar 

Kumar V, Nautiyal CS (2023) Endophytes modulate plant genes: Present status and future perspectives. Curr Microbiol 80(11):353. https://doi.org/10.1007/s00284-023-03466-y

Article  CAS  PubMed  Google Scholar 

Santra HK, Banerjee D (2024) Bioactive metabolites from endophytes of African club moss-Selaginella kraussiana (Kunze) A. Braun exhibit broad-spectrum pharmaceutical utilities. S Afr J Bot 169:301–313. https://doi.org/10.1016/j.sajb.2024.04.039

Article  CAS  Google Scholar 

Saha S, Ghosh A, Santra HK, Banerjee D, Chattopadhyay S (2024) Corrective role of endophytic exopolysaccharides from Clerodendrum Infortunatum L. on arsenic-induced ovarian steroidogenic dysfunction and associated inflammatory responses. Int J Biol Macromol 282:136795. https://doi.org/10.1016/j.ijbiomac.2024.136795

Article  CAS  PubMed  Google Scholar 

Clinical and Laboratory Standards Institute (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M07-A10. CLSI, USA, Wayne, PA

Google Scholar 

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

Article  CAS  PubMed  Google Scholar 

Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62(2):315–323. https://doi.org/10.1042/bj0620315

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santra HK, Maity S, Banerjee D (2022) Production of bioactive compounds with broad spectrum bactericidal action, bio-film inhibition and antilarval potential by the secondary metabolites of the endophytic fungus Cochliobolus sp. APS1 isolated from the Indian medicinal herb Andrographis paniculata. Molecules 27(5):1459. https://doi.org/10.3390/molecules27051459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lorian V (2005) Antibiotics in laboratory medicine. Lippincott Williams & Wilkins

Google Scholar 

Heath HE, Gaudy ET (1978) Relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives by Pseudomonas aeruginosa. J Bacteriol 136(2):638–646. https://doi.org/10.1128/jb.136.2.638-646.1978

Article  CAS  PubMed 

留言 (0)

沒有登入
gif