Ahmed S, Marotte H, Kwan K et al (2008) Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci 105:14692–14697. https://doi.org/10.1073/pnas.0802675105
Article PubMed PubMed Central Google Scholar
Carpier J-M, Lucas CL (2018) Epstein-Barr virus susceptibility in activated PI3Kδ syndrome (APDS) immunodeficiency. Front Immunol 8:2005. https://doi.org/10.3389/fimmu.2017.02005
Article CAS PubMed PubMed Central Google Scholar
Castellano-González G, Pichaud N, Ballard JWO et al (2016) Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. Oncotarget 7:7426–7440. https://doi.org/10.18632/oncotarget.6863
Article PubMed PubMed Central Google Scholar
Chang L-K, Wei T-T, Chiu Y-F et al (2003) Inhibition of Epstein-Barr virus lytic cycle by (−)-epigallocatechin gallate. Biochem and Biophys Res Commun 301:1062–1068. https://doi.org/10.1016/S0006-291X(03)00067-6
Chen Y-L, Tsai H-L, Peng C-W (2012) EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1. Biochem and Biophys Res Commun 417:1093–1099. https://doi.org/10.1016/j.bbrc.2011.12.104
Chen B, Zhang W, Lin C, Zhang L (2022) A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases. Int J Mol Sci 23:11569. https://doi.org/10.3390/ijms231911569
Article CAS PubMed PubMed Central Google Scholar
Chung SS, Vadgama JV (2015) Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res 35:39–46
CAS PubMed PubMed Central Google Scholar
Dai W, Ruan C, Zhang Y et al (2020) Bioavailability enhancement of EGCG by structural modification and nano-delivery: a review. J of Funct Foods 65:103732. https://doi.org/10.1016/j.jff.2019.103732
Dávila-Collado R, Jarquín-Durán O, Dong LT, Espinoza JL (2020) Epstein-Barr virus and Helicobacter pylori co-infection in non-malignant gastroduodenal disorders. Pathog 9:104. https://doi.org/10.3390/pathogens9020104
Debuysschere C, Nekoua MP, Hober D (2023) Markers of Epstein-Barr virus infection in patients with multiple sclerosis. Microorganisms 11:1262. https://doi.org/10.3390/microorganisms11051262
Article CAS PubMed PubMed Central Google Scholar
Dragicevic N, Smith A, Lin X et al (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26:507–521. https://doi.org/10.3233/JAD-2011-101629
Article CAS PubMed Google Scholar
Fukui H, Diaz F, Garcia S, Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 104:14163–14168. https://doi.org/10.1073/pnas.0705738104
Article CAS PubMed PubMed Central Google Scholar
Graner M, Pointon T, Manton S et al (2020) Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides. PLoS ONE 15:e0228883. https://doi.org/10.1371/journal.pone.0228883
Article CAS PubMed PubMed Central Google Scholar
Hammerschmidt W, Sugden B (2013) Replication of Epstein-Barr viral DNA. Cold Spring Harb Perspect Biol 5:a013029. https://doi.org/10.1101/cshperspect.a013029
Article CAS PubMed PubMed Central Google Scholar
Isaacs CE, Wen GY, Xu W et al (2008) Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother 52:962–970. https://doi.org/10.1128/AAC.00825-07
Article CAS PubMed PubMed Central Google Scholar
Islam MS, Akhtar MM, Ciavattini A et al (2014) Use of dietary phytochemicals to target inflammation, fibrosis, proliferation, and angiogenesis in uterine tissues: promising options for prevention and treatment of uterine fibroids? Mol Nutr Food Res 58:1667–1684. https://doi.org/10.1002/mnfr.201400134
Article CAS PubMed PubMed Central Google Scholar
Jakhmola S, Jonniya NA, Sk MF et al (2021) Identification of potential inhibitors against Epstein-Barr Virus Nuclear Antigen 1 (EBNA1): an insight from docking and molecular dynamic simulations. ACS Chem Neurosci 12:3060–3072. https://doi.org/10.1021/acschemneuro.1c00350
Article CAS PubMed Google Scholar
Jakhmola S, Hazarika Z, Jha AN, Jha HC (2022) In silico analysis of antiviral phytochemicals efficacy against Epstein-Barr virus glycoprotein H. J of Biomol Struct and Dyn 40:5372–5385. https://doi.org/10.1080/07391102.2020.1871074
Jha HC, Mehta D, Lu J et al (2015) Gammaherpesvirus infection of human neuronal cells. mBio 6:e01844-15. https://doi.org/10.1128/mBio.01844-15
Article CAS PubMed PubMed Central Google Scholar
Kakalacheva K, Münz C, Lünemann JD (2011) Viral triggers of multiple sclerosis. Biochim Biophys Acta 1812:132–140. https://doi.org/10.1016/j.bbadis.2010.06.012
Article CAS PubMed Google Scholar
Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NCh (2020) The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification. Arch of Biochem and Biophys 695:108620. https://doi.org/10.1016/j.abb.2020.108620
Lee JW, Lee YK, Ban JO et al (2009) Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice. J Nutr 139:1987–1993. https://doi.org/10.3945/jn.109.109785
Article CAS PubMed Google Scholar
Li H, Li Y, Hu J et al (2021) ()-Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK signal axes. Oncol Res 28:763–778. https://doi.org/10.3727/096504021X16135618512563
Article PubMed PubMed Central Google Scholar
Liu S, Li H, Chen L et al (2013) (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. J Carcinog 34:627–637. https://doi.org/10.1093/carcin/bgs364
Liu S, Li H, Tang M, Cao Y (2017) (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves downregulation of latent membrane protein 1. Exp Ther Med 15:1105–12. https://doi.org/10.3892/etm.2017.5495
Article CAS PubMed PubMed Central Google Scholar
Lünemann JD, Tintoré M, Messmer B et al (2010) Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann of Neurol 67:159–169. https://doi.org/10.1002/ana.21886
Meyding-Lamadé U, Strank C (2012) Herpesvirus infections of the central nervous system in immunocompromised patients. Ther Adv Neurol Disord 5:279–296. https://doi.org/10.1177/1756285612456234
Article PubMed PubMed Central Google Scholar
Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604. https://doi.org/10.1016/j.bcp.2014.01.008
留言 (0)