Current insights into molecular mechanisms of environmental stress tolerance in Cyanobacteria

Agarwal P, Soni R, Kaur P, Madan A, Mishra R, Pandey J, Singh S, Singh G (2022) Cyanobacteria as a promising alternative for sustainable environment: synthesis of biofuel and biodegradable plastics. Front Microbiol 13:939347. https://doi.org/10.3389/fmicb.2022.939347

Article  PubMed  PubMed Central  Google Scholar 

Aikawa S, Nishida A, Hasunuma T, Chang J-S, Kondo A (2019) Short-term temporal metabolic behavior in Halophilic Cyanobacterium Synechococcus sp. strain PCC 7002 after salt shock. Metabolites 9(12):297. https://doi.org/10.3390/metabo9120297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98(1–3):529–539. https://doi.org/10.1007/s11120-008-9334-x

Article  CAS  PubMed  Google Scholar 

Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of < i > psbA genes in < i > Synechocystis. Plant Physiol 130(3):1443–1453. https://doi.org/10.1104/pp.011114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Álvarez-Escribano I, Vioque A, Muro-Pastor AM (2018) NsrR1, a nitrogen stress-repressed sRNA, contributes to the regulation of nblA in Nostoc sp. PCC 7120. Front Microbiol 9:2267. https://doi.org/10.3389/fmicb.2018.02267

Article  PubMed  PubMed Central  Google Scholar 

Babele PK, Kumar J, Chaturvedi V (2019) Proteomic de-regulation in cyanobacteria in response to abiotic stresses. Front Microbiol 10:1315. https://doi.org/10.3389/fmicb.2019.01315

Article  PubMed  PubMed Central  Google Scholar 

Bag P (2021) Light harvesting in fluctuating environments: evolution and function of antenna proteins across Photosynthetic Lineage. Plants 10(6):1184. https://doi.org/10.3390/plants10061184

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barteneva NS, Meirkhanova A, Malashenkov D, Vorobjev IA (2022) To die or not to die—regulated cell death and survival in cyanobacteria. Microorganisms 10(8):1657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16(7):1011–1024. https://doi.org/10.1007/s00775-011-0790-y

Article  CAS  PubMed  Google Scholar 

Brenes-Álvarez M, Olmedo-Verd E, Vioque A, Muro-Pastor AM (2016) Identification of conserved and potentially regulatory small RNAs in Heterocystous Cyanobacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00048

Article  PubMed  PubMed Central  Google Scholar 

Brutemark A, Engström-Öst J, Vehmaa A, Gorokhova E (2015) Growth, toxicity and oxidative stress of a cultured cyanobacterium (D olichospermum sp.) under different CO 2 / pH and temperature conditions. Phycological Res 63(1):56–63. https://doi.org/10.1111/pre.12075

Article  CAS  Google Scholar 

Canonico M, Konert G, Crepin A, Šedivá B, Kaňa R (2021) Gradual response of Cyanobacterial thylakoids to acute high-light stress—importance of Carotenoid accumulation. Cells 10(8):1916. https://doi.org/10.3390/cells10081916

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassier-Chauvat C, Blanc-Garin V, Chauvat F (2021) Genetic, genomics, and responses to stresses in cyanobacteria: biotechnological implications. Genes 12(4):500. https://doi.org/10.3390/genes12040500

Article  CAS  PubMed  PubMed Central  Google Scholar 

Červený J, Sinetova M, Zavřel T, Los D (2015) Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: an impact of Histidine Kinase 34. Life 5(1):676–699. https://doi.org/10.3390/life5010676

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakdar H, Thapa S, Srivastava A, Shukla P (2022) Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. J Hazard Mater 424:127609. https://doi.org/10.1016/j.jhazmat.2021.127609

Article  CAS  PubMed  Google Scholar 

Chaurasia AK, Apte SK (2009) Overexpression of the < i > groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium < i > Anabaena sp. strain PCC7120. Appl Environ Microbiol 75(18):6008–6012. https://doi.org/10.1128/AEM.00838-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Checa J, Aran JM (2020) Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res Volume 13:1057–1073. https://doi.org/10.2147/JIR.S275595

Article  CAS  Google Scholar 

Cheng Y, Zhang T, Wang L, Chen W (2020) Transcriptome analysis reveals IsiA-regulatory mechanisms underlying iron depletion and oxidative-stress acclimation in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 86(13):e00517-00520. https://doi.org/10.1128/AEM.00517-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cimdins A, Klinkert B, Aschke-Sonnenborn U, Kaiser FM, Kortmann J, Narberhaus F (2014) Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers. RNA Biol 11(5):594–608. https://doi.org/10.4161/rna.28648

Article  PubMed  PubMed Central  Google Scholar 

Cui J, Sun T, Li S, Xie Y, Song X, Wang F, Chen L, Zhang W (2020) Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp antiporters. Front Bioeng Biotechnol 8:500. https://doi.org/10.3389/fbioe.2020.00500

Article  PubMed  PubMed Central  Google Scholar 

Cui J, Sun T, Chen L, Zhang W (2021) Salt-tolerant Synechococcus elongatus UTEX 2973 obtained via engineering of heterologous synthesis of compatible solute glucosylglycerol. Front Microbiol 12:650217. https://doi.org/10.3389/fmicb.2021.650217

Article  PubMed  PubMed Central  Google Scholar 

Dann M, Ortiz EM, Thomas M, Guljamow A, Lehmann M, Schaefer H, Leister D (2021) Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nat Plants 7(5):681–695. https://doi.org/10.1038/s41477-021-00904-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobson Z, Ahad S, Vanlandingham J, Toporik H, Vaughn N, Vaughn M, Williams D, Reppert M, Fromme P, Mazor Y (2021) The structure of photosystem I from a high-light-tolerant cyanobacteria. eLife 10:e67518. https://doi.org/10.7554/eLife.67518

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domínguez-Martín MA, Sauer PV, Kirst H, Sutter M, Bína D, Greber BJ, Nogales E, Polívka T, Kerfeld CA (2022) Structures of a phycobilisome in light-harvesting and photoprotected states. Nature 609(7928):835–845. https://doi.org/10.1038/s41586-022-05156-4

Article  CAS  PubMed  Google Scholar 

Düppre E, Rupprecht E, Schneider D (2011) Specific and promiscuous functions of multiple DnaJ proteins in Synechocystis Sp. PCC 6803 Microbiol 157(5):1269–1278. https://doi.org/10.1099/mic.0.045542-0

Article  CAS  Google Scholar 

Dutt V, Srivastava S (2018) Novel quantitative insights into carbon sources for synthesis of poly hydroxybutyrate in Synechocystis PCC 6803. Photosynth Res 136(3):303–314. https://doi.org/10.1007/s11120-017-0464-x

Article  CAS  PubMed  Google Scholar 

Dutta S, Bhadury P (2020) Effect of arsenic on exopolysaccharide production in a diazotrophic cyanobacterium. J Appl Phycol 32(5):2915–2926. https://doi.org/10.1007/s10811-020-02206-0

Article  CAS 

留言 (0)

沒有登入
gif