Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma

Ladenstein, R. et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1617–1629 (2018).

Article  CAS  PubMed  Google Scholar 

Irwin, M. S. & Park, J. R. Neuroblastoma: paradigm for precision medicine. Pediatr. Clin. North Am. 62, 225–256 (2015).

Article  PubMed  Google Scholar 

London, W. B. et al. Historical time to disease progression and progression-free survival in patients with recurrent/refractory neuroblastoma treated in the modern era on Children’s Oncology Group early-phase trials. Cancer 123, 4914–4923 (2017).

Article  CAS  PubMed  Google Scholar 

Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023).

Article  PubMed  Google Scholar 

Bai, Z. et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. J. Immunother. Cancer 9, e002328 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayden, P. J. et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 33, 259–275 (2022).

Article  CAS  PubMed  Google Scholar 

Harris, A. C. et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium. Biol. Blood Marrow Transplant. 22, 4–10 (2016).

Article  PubMed  Google Scholar 

Bhaskaran, N. et al. Identification of Casz1 as a regulatory protein controlling T helper cell differentiation, inflammation, and immunity. Front. Immunol. 9, 184 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Duquette, D. et al. Human Granzyme K Is a feature of innate T cells in blood, tissues, and tumors, responding to cytokines rather than TCR stimulation. J. Immunol. 211, 633–647 (2023).

Article  CAS  PubMed  Google Scholar 

Piotrowski, J. T., Gomez, T. S., Schoon, R. A., Mangalam, A. K. & Billadeau, D. D. WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol. Cell. Biol. 33, 958–973 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seillier, M. et al. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 19, 1525–1535 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riegler, J. et al. VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia 21, 1036–1050 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acin-Perez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turner, M. E. et al. The lysosomal trafficking regulator ‘LYST’: an 80-year traffic jam. Front. Immunol. 15, 1404846 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willems, L. et al. Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol. Immunother. 62, 1733–1744 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Ash, S. et al. Graft versus neuroblastoma reaction is efficiently elicited by allogeneic bone marrow transplantation through cytolytic activity in the absence of GVHD. Cancer Immunol. Immunother. 58, 2073–2084 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Inoue, M. et al. Graft-versus-tumor effect in a patient with advanced neuroblastoma who received HLA haplo-identical bone marrow transplantation. Bone Marrow Transplant. 32, 103–106 (2003).

Article  CAS  PubMed  Google Scholar 

Willems, L., Waer, M. & Billiau, A. D. The graft-versus-neuroblastoma effect of allogeneic hematopoietic stem cell transplantation, a review of clinical and experimental evidence and a perspective on mechanisms. Pediatr. Blood Cancer 61, 2151–2157 (2014).

Article  PubMed  Google Scholar 

Prete, A. et al. Phase II study of allogeneic hematopoietic stem cell transplantation for children with high-risk neuroblastoma using a reduced-intensity conditioning regimen: results from the AIEOP trial. Transplant. Cell Ther. 30, 530 e531–530 e538 (2024).

Article  Google Scholar 

Hale, G. A. et al. Allogeneic hematopoietic cell transplantation for neuroblastoma: the CIBMTR experience. Bone Marrow Transplant. 48, 1056–1064 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flaadt, T. et al. Anti-GD2 antibody dinutuximab beta and low-dose interleukin 2 after haploidentical stem-cell transplantation in patients with relapsed neuroblastoma: a multicenter, phase I/II trial. J. Clin. Oncol. 41, 3135–3148 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brudno, J. N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Donor-derived CD19-targeted T cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br. J. Haematol. 179, 598–605 (2017).

Article  CAS  PubMed  Google Scholar 

Kebriaei, P. et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 126, 3363–3376 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Locatelli, F., Del Bufalo, F. & Quintarelli, C. Allogeneic chimeric antigen receptor T cells for children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Haematologica 109, 1689–1699 (2024).

Article 

留言 (0)

沒有登入
gif