Machine learning validation of a simple prediction model for the correlation between advanced age and clinical outcomes in patients with aneurysmal subarachnoid hemorrhage

United Nations Population Division (2022) Population ages 65 and above (% of total population) - Afghanistan, Japan. The World Bank. https://www.data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?locations=AF-JP. Accessed 25 Dec 2023

Navi BB, Kamel H, McCulloch CE, Nakagawa K, Naravetla B, Moheet AM, Wong C, Johnston SC, Hemphill JC 3rd, Smith WS (2012) Accuracy of neurovascular fellows’ prognostication of outcome after subarachnoid hemorrhage. Stroke 43:702–707. https://doi.org/10.1161/STROKEAHA.111.639161

Article  PubMed  Google Scholar 

Teasdale GM, Drake CG, Hunt W, Kassell N, Sano K, Pertuiset B, De Villiers JC (1988) A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry 51:1457. https://doi.org/10.1136/jnnp.51.11.1457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9. https://doi.org/10.1227/00006123-198001000-00001

Article  CAS  PubMed  Google Scholar 

Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, Holman R, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group (2002) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274. https://doi.org/10.1016/s0140-6736(02)11314-6

Article  PubMed  Google Scholar 

Ikawa F, Ichihara N, Uno M, Shiokawa Y, Toyoda K, Minematsu K, Kobayashi S, Yamaguchi S, Kurisu K, Japanese Standard Stroke Registry Study Group (2021) Visualisation of the non-linear correlation between age and poor outcome in patients with aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 92:1173–1180. https://doi.org/10.1136/jnnp-2020-325306

Article  PubMed  Google Scholar 

Rosen DS, Macdonald RL (2004) Grading of subarachnoid hemorrhage: modification of the World Federation of Neurosurgical Societies scale on the basis of data for a large series of patients. Neurosurgery 54:566–575 discussion 575

Article  PubMed  Google Scholar 

Risselada R, Lingsma HF, Bauer-Mehren A, Friedrich CM, Molyneux AJ, Kerr RS, Yarnold J, Sneade M, Steyerberg EW, Sturkenboom MC (2010) Prediction of 60 day case-fatality after aneurysmal subarachnoid haemorrhage: results from the International Subarachnoid Aneurysm Trial (ISAT). Eur J Epidemiol 25:261–266. https://doi.org/10.1007/s10654-010-9432-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaja BNR, Saposnik G, Lingsma HF, Macdonald E, Thorpe KE, Mamdani M, Steyerberg EW, Molyneux A, Manoel ALO, Schatlo B, Hanggi D, Hasan D, Wong GKC, Etminan N, Fukuda H, Torner J, Schaller KL, Suarez JI, Stienen MN, Vergouwen MDI, Rinkel GJE, Spears J, Cusimano MD, Todd M, Le Roux P, Kirkpatrick P, Pickard J, van den Bergh WM, Murray G, Johnston SC, Yamagata S, Mayer S, Schweizer TA, Macdonald RL, SAHIT collaboration (2018) Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study. BMJ 360:j5745. https://doi.org/10.1136/bmj.j5745

Article  PubMed  Google Scholar 

Witsch J, Frey HP, Patel S, Park S, Lahiri S, Schmidt JM, Agarwal S, Falo MC, Velazquez A, Jaja B, Macdonald RL, Connolly ES, Claassen J (2016) Prognostication of long-term outcomes after subarachnoid hemorrhage: the FRESH score. Ann Neurol 80:46–58. https://doi.org/10.1002/ana.24675

Article  PubMed  Google Scholar 

Jaja BNR (2014) Prognostic factors in aneurysmal subarachnoid hemorrhage: pooled analyses of individual patient data and development of novel risk scores in large cohorts of international patients. University of Toronto, Canada

Google Scholar 

Hostettler IC, Sebök M, Ambler G, Muroi C, Prömmel P, Neidert MC, Richter JK, Pangalu A, Regli L, Germans MR (2020) Validation and optimization of Barrow Neurological Institute score in prediction of adverse events and functional outcome after subarachnoid hemorrhage-creation of the HATCH (hemorrhage, age, treatment, clinical state, hydrocephalus) score. Neurosurgery 88:96–105. https://doi.org/10.1093/neuros/nyaa316

Article  PubMed  Google Scholar 

Goldberg J, Schoeni D, Mordasini P, Z’Graggen W, Gralla J, Raabe A, Beck J, Fung C (2018) Survival and outcome after poor-grade aneurysmal subarachnoid hemorrhage in elderly patients. Stroke 49:2883–2889. https://doi.org/10.1161/STROKEAHA.118.022869

Article  PubMed  Google Scholar 

de Jong G, Aquarius R, Sanaan B, Bartels RHM, Grotenhuis JA, Henssen DJHA, Boogaarts HD (2021) Prediction models in aneurysmal subarachnoid hemorrhage: forecasting clinical outcome with artificial intelligence. Neurosurgery 88:E427–E434. https://doi.org/10.1093/neuros/nyaa581

Article  PubMed  Google Scholar 

Macdonald RL (2021) Age and outcome after aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 92:1143. https://doi.org/10.1136/jnnp-2021-326920

Article  PubMed  Google Scholar 

Kobayashi S, Japan Stroke Scale Registry Study Group (2006) International experience in stroke registry: Japanese stroke databank. Am J Prev Med 31:S240–S242

Article  PubMed  Google Scholar 

Ikawa F, Abiko M, Ishii D, Ohshita J, Matsushige T, Okazaki T, Sakamoto S, Hida E, Kobayashi S, Kurisu K (2018) Analysis of outcome at discharge after aneurysmal subarachnoid hemorrhage in Japan according to the Japanese stroke databank. Neurosurg Rev 41:567–574. https://doi.org/10.1007/s10143-017-0894-0

Article  PubMed  Google Scholar 

Kobayashi S, Fukuma S, Ikenoue T, Fukuhara S, Kobayashi S (2019) Effect of Edaravone on neurological symptoms in real-world patients with acute ischemic stroke. Stroke 50:1805–1811. https://doi.org/10.1161/STROKEAHA.118.024351

Article  CAS  PubMed  Google Scholar 

Toyoda K, Yoshimura S, Nakai M, Koga M, Sasahara Y, Sonoda K, Kamiyama K, Yazawa Y, Kawada S, Sasaki M, Terasaki T, Miwa K, Koge J, Ishigami A, Wada S, Iwanaga Y, Miyamoto Y, Minematsu K, Kobayashi S, Japan Stroke Data Bank Investigators (2022) Twenty-year change in severity and outcome of ischemic and hemorrhagic strokes. JAMA Neurol 79:61–69. https://doi.org/10.1001/jamaneurol.2021.4346

Article  PubMed  Google Scholar 

Shinohara Y, Yamaguchi T (2008) Outline of the Japanese guidelines for the management of Stroke 2004 and subsequent revision. Int J Stroke 3:55–62. https://doi.org/10.1111/j.1747-4949.2008.00178.x

Article  PubMed  Google Scholar 

Shinohara Y, Yanagihara T, Abe K, Fujinaka T, Chuma T, Ochi F, Nagayama M, Ogawa A, Suzuki N, Katayama Y, Kimura A, Yoshimine T (2011) IV. Subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 20:S100–S115. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.05.011

Article  PubMed  Google Scholar 

Farrell B, Godwin J, Richards S, Warlow C (1991) The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: final results. J Neurol Neurosurg Psychiatry 54:1044–1054. https://doi.org/10.1136/jnnp.54.12.1044

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594. https://doi.org/10.1136/bmj.g7594

Article  CAS  PubMed  Google Scholar 

von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE Initiative (2007) The strengthening the reporting of Observational studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457. https://doi.org/10.1016/S0140-6736(07)61602-X

Article  Google Scholar 

Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–310. https://doi.org/10.1214/ss/1177013604

Article  Google Scholar 

Guisan A, Edwards TC Jr, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157:89–100. https://doi.org/10.1016/S0304-3800(02)00204-1

Article  Google Scholar 

Voils CI, Crandell JL, Chang Y, Leeman J, Sandelowski M (2011) Combining adjusted and unadjusted findings in mixed research synthesis. J Eval Clin Pract 17:429–434. https://doi.org/10.1111/j.1365-2753.2010.01444.x

Article  PubMed  Google Scholar 

Yundt KD, Dacey RG Jr, Diringer MN (1996) Hospital resource utilization in the treatment of cerebral aneurysms. J Neurosurg 85:403–409. https://doi.org/10.3171/jns.1996.85.3.0403

Article  CAS  PubMed  Google Scholar 

Cylus J, Figueras J, Normand C, Sagan A, Richardson E, North J, White C (eds) (2019) Will Population Ageing spell the end of the Welfare State? A review of evidence and policy options. European Observatory on Health Systems and Policies, Copenhagen

Google Scholar 

Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B (2019) A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 110:12–22. https://doi.org/10.1016/j.jclinepi.2019.02.004

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif