Kostuik JP, Bentivoglio J (1981) The incidence of low-back pain in adult scoliosis. Spine 6:268–273
Article CAS PubMed Google Scholar
Berven S, Deviren V, Demir-Deviren S et al (2003) Studies in the modified scoliosis research society outcomes instrument in adults validation, reliability, and discriminatory capacity. Spine 28:2164–2169. https://doi.org/10.1097/01.BRS.0000084666.53553.D6
Daniels AH, Reid DBC, Tran SN et al (2019) Evolution in surgical approach, complications, and outcomes in an adult spinal deformity surgery multicenter study group patient population. Spine Deform 7:481–488. https://doi.org/10.1016/j.jspd.2018.09.013
Togawa D, Hasegawa T, Yamato Y et al (2018) Postoperative disability after long corrective fusion to the pelvis in elderly patients with spinal deformity. Spine 43:E804–E812. https://doi.org/10.1097/BRS.0000000000002540
Yoshida G, Boissiere L, Larrieu D et al (2017) Advantages and disadvantages of adult spinal deformity surgery and its impact on health-related quality of life. Spine 42(411):419. https://doi.org/10.1097/BRS.0000000000001770
Mekhael E, El Rachkidi R, Saliby RM et al (2023) Functional assessment using 3D movement analysis can better predict health-related quality of life outcomes in patients with adult spinal deformity: a machine learning approach. Front Surg. https://doi.org/10.3389/fsurg.2023.1166734
Article PubMed PubMed Central Google Scholar
Semaan K, Rachkidi R, Saad E et al (2022) Alterations of gait kinematics depend on the deformity type in the setting of adult spinal deformity. Eur Spine J 31:3069–3080. https://doi.org/10.1007/s00586-022-07348-y
Serra-Burriel M, Ames C (2022) Machine learning-based clustering analysis: foundational concepts, methods, and applications. Acta Neurochir Suppl 134:91–100. https://doi.org/10.1007/978-3-030-85292-4_12
Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. https://doi.org/10.1038/nbt0308-303
Article CAS PubMed Google Scholar
Plows JF, Berger PK, Jones RB et al (2022) Development and validation of a prediction model for infant fat mass. J Pediatr 243:130-134.e2. https://doi.org/10.1016/j.jpeds.2021.12.058
Poldrack RA, Huckins G, Varoquaux G (2020) Establishment of best practices for evidence for prediction: a review. JAMA Psychiat 77:534–540. https://doi.org/10.1001/jamapsychiatry.2019.3671
Petegrosso R, Li Z, Kuang R (2020) Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief Bioinform 21:1209–1223. https://doi.org/10.1093/bib/bbz063
Article CAS PubMed Google Scholar
Zhang Z, Trevino V, Hoseini SS et al (2018) Variable selection in logistic regression model with genetic algorithm. Ann Transl Med 6:45. https://doi.org/10.21037/atm.2018.01.15
Article PubMed PubMed Central Google Scholar
Hu J-Y, Wang Y, Tong X-M, Yang T (2021) When to consider logistic LASSO regression in multivariate analysis? Eur J Surg Oncol 47:2206. https://doi.org/10.1016/j.ejso.2021.04.011
Shariatnia S, Ziaratban M, Rajabi A et al (2022) Modeling the diagnosis of coronary artery disease by discriminant analysis and logistic regression: a cross-sectional study. BMC Med Inform Decis Mak 22:85. https://doi.org/10.1186/s12911-022-01823-8
Article PubMed PubMed Central Google Scholar
Kriegeskorte N, Golan T (2019) Neural network models and deep learning. Curr Biol 29:R231–R236. https://doi.org/10.1016/j.cub.2019.02.034
Article CAS PubMed Google Scholar
Benzakour A, Altsitzioglou P, Lemée JM et al (2023) Artificial intelligence in spine surgery. Int Orthop 47:457–465. https://doi.org/10.1007/s00264-022-05517-8
Hornung AL, Hornung CM, Mallow GM et al (2022) Artificial intelligence in spine care: current applications and future utility. Eur Spine J 31:2057–2081. https://doi.org/10.1007/s00586-022-07176-0
Ames CP, Smith JS, Pellisé F et al (2019) Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine 44:915–926. https://doi.org/10.1097/BRS.0000000000002974
Richner-Wunderlin S, Mannion AF, Vila-Casademunt A et al (2019) Factors associated with having an indication for surgery in adult spinal deformity: an international European multicentre study. Eur Spine J 28:127–137. https://doi.org/10.1007/s00586-018-5754-2
Article CAS PubMed Google Scholar
Zhang Z (2014) Too much covariates in a multivariable model may cause the problem of overfitting. J Thorac Dis 6:E196-197. https://doi.org/10.3978/j.issn.2072-1439.2014.08.33
Article PubMed PubMed Central Google Scholar
Pedersen CF, Andersen MØ, Carreon LY, Eiskjær S (2022) Applied machine learning for spine surgeons: predicting outcome for patients undergoing treatment for lumbar disc herniation using PRO data. Global Spine J 12:866–876. https://doi.org/10.1177/2192568220967643
Takahashi S, Terai H, Hoshino M et al (2023) Machine-learning-based approach for nonunion prediction following osteoporotic vertebral fractures. Eur Spine J 32:3788–3796. https://doi.org/10.1007/s00586-022-07431-4
Han SS, Azad TD, Suarez PA, Ratliff JK (2019) A machine learning approach for predictive models of adverse events following spine surgery. Spine J 19:1772–1781. https://doi.org/10.1016/j.spinee.2019.06.018
Article CAS PubMed Google Scholar
Khan O, Badhiwala JH, Witiw CD et al (2021) Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy. Spine J 21:1659–1669. https://doi.org/10.1016/j.spinee.2020.02.003
Zhang AS, Veeramani A, Quinn MS et al (2021) Machine learning prediction of length of stay in adult spinal deformity patients undergoing posterior spine fusion surgery. J Clin Med 10:4074. https://doi.org/10.3390/jcm10184074
Article PubMed PubMed Central Google Scholar
Shah AA, Karhade AV, Bono CM et al (2019) Development of a machine learning algorithm for prediction of failure of nonoperative management in spinal epidural abscess. Spine J 19:1657–1665. https://doi.org/10.1016/j.spinee.2019.04.022
Kim JS, Merrill RK, Arvind V et al (2018) Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine 43:853–860. https://doi.org/10.1097/BRS.0000000000002442
Article PubMed PubMed Central Google Scholar
Stephens ME, O’Neal CM, Westrup AM et al (2022) Utility of machine learning algorithms in degenerative cervical and lumbar spine disease: a systematic review. Neurosurg Rev 45:965–978. https://doi.org/10.1007/s10143-021-01624-z
Pellisé F, Serra-Burriel M, Smith JS et al (2019) Development and validation of risk stratification models for adult spinal deformity surgery. J Neurosurg Spine 31:587–599. https://doi.org/10.3171/2019.3.SPINE181452
Baroncini A, Boissiere L, Larrieu D et al (2024) Comparison of Patients with and without Predicted Surgical Indication between clusters of adult spine deformity (ASD) Patients. Spine. https://doi.org/10.1097/BRS.0000000000005173
留言 (0)