Machine learning can predict surgical indication: new clustering model from a large adult spine deformity database

Kostuik JP, Bentivoglio J (1981) The incidence of low-back pain in adult scoliosis. Spine 6:268–273

Article  CAS  PubMed  Google Scholar 

Berven S, Deviren V, Demir-Deviren S et al (2003) Studies in the modified scoliosis research society outcomes instrument in adults validation, reliability, and discriminatory capacity. Spine 28:2164–2169. https://doi.org/10.1097/01.BRS.0000084666.53553.D6

Article  PubMed  Google Scholar 

Daniels AH, Reid DBC, Tran SN et al (2019) Evolution in surgical approach, complications, and outcomes in an adult spinal deformity surgery multicenter study group patient population. Spine Deform 7:481–488. https://doi.org/10.1016/j.jspd.2018.09.013

Article  PubMed  Google Scholar 

Togawa D, Hasegawa T, Yamato Y et al (2018) Postoperative disability after long corrective fusion to the pelvis in elderly patients with spinal deformity. Spine 43:E804–E812. https://doi.org/10.1097/BRS.0000000000002540

Article  PubMed  Google Scholar 

Yoshida G, Boissiere L, Larrieu D et al (2017) Advantages and disadvantages of adult spinal deformity surgery and its impact on health-related quality of life. Spine 42(411):419. https://doi.org/10.1097/BRS.0000000000001770

Article  Google Scholar 

Mekhael E, El Rachkidi R, Saliby RM et al (2023) Functional assessment using 3D movement analysis can better predict health-related quality of life outcomes in patients with adult spinal deformity: a machine learning approach. Front Surg. https://doi.org/10.3389/fsurg.2023.1166734

Article  PubMed  PubMed Central  Google Scholar 

Semaan K, Rachkidi R, Saad E et al (2022) Alterations of gait kinematics depend on the deformity type in the setting of adult spinal deformity. Eur Spine J 31:3069–3080. https://doi.org/10.1007/s00586-022-07348-y

Article  PubMed  Google Scholar 

Serra-Burriel M, Ames C (2022) Machine learning-based clustering analysis: foundational concepts, methods, and applications. Acta Neurochir Suppl 134:91–100. https://doi.org/10.1007/978-3-030-85292-4_12

Article  PubMed  Google Scholar 

Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. https://doi.org/10.1038/nbt0308-303

Article  CAS  PubMed  Google Scholar 

Plows JF, Berger PK, Jones RB et al (2022) Development and validation of a prediction model for infant fat mass. J Pediatr 243:130-134.e2. https://doi.org/10.1016/j.jpeds.2021.12.058

Article  PubMed  Google Scholar 

Poldrack RA, Huckins G, Varoquaux G (2020) Establishment of best practices for evidence for prediction: a review. JAMA Psychiat 77:534–540. https://doi.org/10.1001/jamapsychiatry.2019.3671

Article  Google Scholar 

Petegrosso R, Li Z, Kuang R (2020) Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief Bioinform 21:1209–1223. https://doi.org/10.1093/bib/bbz063

Article  CAS  PubMed  Google Scholar 

Zhang Z, Trevino V, Hoseini SS et al (2018) Variable selection in logistic regression model with genetic algorithm. Ann Transl Med 6:45. https://doi.org/10.21037/atm.2018.01.15

Article  PubMed  PubMed Central  Google Scholar 

Hu J-Y, Wang Y, Tong X-M, Yang T (2021) When to consider logistic LASSO regression in multivariate analysis? Eur J Surg Oncol 47:2206. https://doi.org/10.1016/j.ejso.2021.04.011

Article  PubMed  Google Scholar 

Shariatnia S, Ziaratban M, Rajabi A et al (2022) Modeling the diagnosis of coronary artery disease by discriminant analysis and logistic regression: a cross-sectional study. BMC Med Inform Decis Mak 22:85. https://doi.org/10.1186/s12911-022-01823-8

Article  PubMed  PubMed Central  Google Scholar 

Kriegeskorte N, Golan T (2019) Neural network models and deep learning. Curr Biol 29:R231–R236. https://doi.org/10.1016/j.cub.2019.02.034

Article  CAS  PubMed  Google Scholar 

Benzakour A, Altsitzioglou P, Lemée JM et al (2023) Artificial intelligence in spine surgery. Int Orthop 47:457–465. https://doi.org/10.1007/s00264-022-05517-8

Article  PubMed  Google Scholar 

Hornung AL, Hornung CM, Mallow GM et al (2022) Artificial intelligence in spine care: current applications and future utility. Eur Spine J 31:2057–2081. https://doi.org/10.1007/s00586-022-07176-0

Article  PubMed  Google Scholar 

Ames CP, Smith JS, Pellisé F et al (2019) Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine 44:915–926. https://doi.org/10.1097/BRS.0000000000002974

Article  PubMed  Google Scholar 

Richner-Wunderlin S, Mannion AF, Vila-Casademunt A et al (2019) Factors associated with having an indication for surgery in adult spinal deformity: an international European multicentre study. Eur Spine J 28:127–137. https://doi.org/10.1007/s00586-018-5754-2

Article  CAS  PubMed  Google Scholar 

Zhang Z (2014) Too much covariates in a multivariable model may cause the problem of overfitting. J Thorac Dis 6:E196-197. https://doi.org/10.3978/j.issn.2072-1439.2014.08.33

Article  PubMed  PubMed Central  Google Scholar 

Pedersen CF, Andersen MØ, Carreon LY, Eiskjær S (2022) Applied machine learning for spine surgeons: predicting outcome for patients undergoing treatment for lumbar disc herniation using PRO data. Global Spine J 12:866–876. https://doi.org/10.1177/2192568220967643

Article  PubMed  Google Scholar 

Takahashi S, Terai H, Hoshino M et al (2023) Machine-learning-based approach for nonunion prediction following osteoporotic vertebral fractures. Eur Spine J 32:3788–3796. https://doi.org/10.1007/s00586-022-07431-4

Article  PubMed  Google Scholar 

Han SS, Azad TD, Suarez PA, Ratliff JK (2019) A machine learning approach for predictive models of adverse events following spine surgery. Spine J 19:1772–1781. https://doi.org/10.1016/j.spinee.2019.06.018

Article  CAS  PubMed  Google Scholar 

Khan O, Badhiwala JH, Witiw CD et al (2021) Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy. Spine J 21:1659–1669. https://doi.org/10.1016/j.spinee.2020.02.003

Article  PubMed  Google Scholar 

Zhang AS, Veeramani A, Quinn MS et al (2021) Machine learning prediction of length of stay in adult spinal deformity patients undergoing posterior spine fusion surgery. J Clin Med 10:4074. https://doi.org/10.3390/jcm10184074

Article  PubMed  PubMed Central  Google Scholar 

Shah AA, Karhade AV, Bono CM et al (2019) Development of a machine learning algorithm for prediction of failure of nonoperative management in spinal epidural abscess. Spine J 19:1657–1665. https://doi.org/10.1016/j.spinee.2019.04.022

Article  PubMed  Google Scholar 

Kim JS, Merrill RK, Arvind V et al (2018) Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine 43:853–860. https://doi.org/10.1097/BRS.0000000000002442

Article  PubMed  PubMed Central  Google Scholar 

Stephens ME, O’Neal CM, Westrup AM et al (2022) Utility of machine learning algorithms in degenerative cervical and lumbar spine disease: a systematic review. Neurosurg Rev 45:965–978. https://doi.org/10.1007/s10143-021-01624-z

Article  PubMed  Google Scholar 

Pellisé F, Serra-Burriel M, Smith JS et al (2019) Development and validation of risk stratification models for adult spinal deformity surgery. J Neurosurg Spine 31:587–599. https://doi.org/10.3171/2019.3.SPINE181452

Article  PubMed  Google Scholar 

Baroncini A, Boissiere L, Larrieu D et al (2024) Comparison of Patients with and without Predicted Surgical Indication between clusters of adult spine deformity (ASD) Patients. Spine. https://doi.org/10.1097/BRS.0000000000005173

留言 (0)

沒有登入
gif