Huang, C., Wang, Y., Li, X., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 2020, vol. 395, no. 10223, pp. 497—506. https://doi.org/10.1016/S0140-6736(20)30183-5
Article CAS PubMed PubMed Central Google Scholar
Shaman, J. and Galanti, M., Will SARS-CoV-2 become endemic?, Science, 2020, vol. 370, no. 6516, pp. 527—529. https://doi.org/10.1126/science.abe5960
Article CAS PubMed Google Scholar
Otto, S.P., MacPherson, A., and Colijn, C., Endemic does not mean constant as SARS-CoV-2 continues to evolve, Evolution, 2024, vol. 10. https://doi.org/10.1093/evolut/qpae041
Soheili, M., Khateri, S., Moradpour, F., et al., The efficacy and effectiveness of COVID-19 vaccines around the world: a mini-review and meta-analysis, Ann. Clin. Microbiol. Antimicrob., 2023, vol. 22, no. 1, p. 42. https://doi.org/10.1186/s12941-023-00594-y
Article PubMed PubMed Central Google Scholar
Netea, M.G., van der Meer, J.W., and van Crevel, R., BCG vaccination in health care providers and the protection against COVID-19, J. Clin. Invest., 2021, vol. 131, no. 2. https://doi.org/10.1172/JCI145545
Aaby, P., Benn, C.S., Flanagan, K.L., et al., The non-specific and sex-differential effects of vaccines, Nat. Rev. Immunol., 2020, vol. 20, no. 8, pp. 464—470. https://doi.org/10.1038/s41577-020-0338-x
Article CAS PubMed PubMed Central Google Scholar
Higgins, J.P., Soares-Weiser, K., Lopez-Lopez, J.A., et al., Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review, BMJ, 2016, vol. 355. https://doi.org/10.1136/bmj.i5170
Baydemir, I., Dulfer, E.A., Netea, M.G., and Dominguez-Andres, J., Trained immunity-inducing vaccines: harnessing innate memory for vaccine design and delivery, Clin. Immunol., 2024, vol. 261. https://doi.org/10.1016/j.clim.2024.109930
Shann, F., The non-specific effects of vaccines, Arch. Dis. Child., 2010, vol. 95, no. 9, pp. 662—667. https://doi.org/10.1136/adc.2009.157537
Stensballe, L.G., Nante, E., Jensen, I.P., et al., Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case—control study, Vaccine, 2005, vol. 23, no. 10, pp. 1251—1257. https://doi.org/10.1016/j.vaccine.2004.09.006
Article CAS PubMed Google Scholar
Nemes, E., Geldenhuys, H., Rozot, V., et al., Prevention of M. tuberculosis, infection with H4:IC31 vaccine or BCG revaccination, N. Engl. J. Med., 2018, vol. 379, no. 2, pp. 138—149. https://doi.org/10.1056/NEJMoa1714021
Article CAS PubMed PubMed Central Google Scholar
Giamarellos-Bourboulis, E.J., Tsilika, M., Moorlag, S., et al., Activate: randomized clinical trial of BCG vaccination against infection in the elderly, Cell, 2020, vol. 183, no. 2, pp. 315—323. https://doi.org/10.1016/j.cell.2020.08.051
Article CAS PubMed PubMed Central Google Scholar
Spencer, J.C., Ganguly, R., and Waldman, R.H., Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin, J. Infect. Dis., 1977, vol. 136, no. 2, pp. 171—175. https://doi.org/10.1093/infdis/136.2.171
Article CAS PubMed Google Scholar
Kleinnijenhuis, J., Quintin, J., Preijers, F., et al., Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 43, pp. 17537—17542. https://doi.org/10.1073/pnas.1202870109
Article PubMed PubMed Central Google Scholar
Cirovic, B., de Bree, L.C.J., Groh, L., et al., BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment, Cell Host Microbe, 2020, vol. 28, no. 2, pp. 322—334. https://doi.org/10.1016/j.chom.2020.05.014
Article CAS PubMed PubMed Central Google Scholar
Arts, R.J.W., Moorlag, S., Novakovic, B., et al., BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity, Cell Host Microbe, 2018, vol. 23, no. 1, pp. 89—100. https://doi.org/10.1016/j.chom.2017.12.010
Article CAS PubMed Google Scholar
Rivas, M.N., Ebinger, J.E., Wu, M., et al., BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers, J. Clin. Invest., 2021, vol. 131, no. 2. https://doi.org/10.1172/JCI145157
Escobar, L.E., Molina-Cruz, A., and Barillas-Mury, C., BCG vaccine protection from severe coronavirus disease 2019 (COVID-19), Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 30, pp. 17720—17726. https://doi.org/10.1073/pnas.2008410117
Article CAS PubMed PubMed Central Google Scholar
Berg, M.K., Yu, Q., Salvador, C.E., et al., Mandated Bacillus Calmette-Guerin (BCG) vaccination predicts flattened curves for the spread of COVID-19, Sci. Adv., 2020, vol. 6, no. 32. https://doi.org/10.1126/sciadv.abc1463
Hamiel, U., Kozer, E., and Youngster, I., SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults, JAMA, 2020, vol. 323, no. 22, pp. 2340—2341. https://doi.org/10.1001/jama.2020.8189
Article CAS PubMed PubMed Central Google Scholar
Moorlag, S., van Deuren, R.C., van Werkhoven, C.H., et al., Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: a retrospective cohort study, Cell. Rep. Med., 2020, vol. 1, no. 5. https://doi.org/10.1016/j.xcrm.2020.100073
Amirlak, L., Haddad, R., Hardy, J.D., et al., Effectiveness of booster BCG vaccination in preventing Covid-19 infection, Hum. Vaccin. Immunother., 2021, vol. 17, no. 11, pp. 3913—3915. https://doi.org/10.1080/21645515.2021.1956228
Article CAS PubMed PubMed Central Google Scholar
Pascolo, S., Vaccines against COVID-19: priority to mRNA-based formulations, Cells, 2021, vol. 10, no. 10. https://doi.org/10.3390/cells10102716
Sukhikh, G.T., Priputnevich, T.V., Ogarkova, D.A., et al., Sputnik light and Sputnik V vaccination is effective at protecting medical personnel from COVID-19 during the period of delta variant dominance, Vaccines, 2022, vol. 10, no. 11. https://doi.org/10.3390/vaccines10111804
Alekseenko, I.V., Vasilov, R.G., Kondrat’eva, L.G., The cellular and epigenetic aspects of trained immunity and prospects for creation of universal vaccines on the eve of more frequent pandemics, Russ. J. Genet., 2023, vol. 59, no. 9, pp. 851—868.
Munoz-Wolf, N. and Lavelle, E.C., Promotion of trained innate immunity by nanoparticles, Semin. Immunol., 2021, vol. 56. https://doi.org/10.1016/j.smim.2021.101542
Hajishengallis, G., Netea, M.G., and Chavakis, T., Innate immune memory, trained immunity and nomenclature clarification, Nat. Immunol., 2023, vol. 24, no. 9, pp. 1393—1394. https://doi.org/10.1038/s41590-023-01595-x
Article CAS PubMed Google Scholar
Kaufmann, E., Sanz, J., Dunn, J.L., et al., BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis, Cell, 2018, vol. 172, nos. 1—2, pp. 176—190. https://doi.org/10.1016/j.cell.2017.12.031
Article CAS PubMed Google Scholar
Verma, D., Parasa, V.R., Raffetseder, J., et al., Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects, Sci. Rep., 2017, vol. 7, no. 1, p. 12305. https://doi.org/10.1038/s41598-017-12110-2
Article CAS PubMed PubMed Central Google Scholar
Singh, S., Saavedra-Avila, N.A., Tiwari, S., and Porcelli, S.A., A century of BCG vaccination: immune mechanisms, animal models, non-traditional routes and implications for COVID-19, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.959656
Murphy, D.M., Mills, K.H.G., and Basdeo, S.A., The effects of trained innate immunity on T cell responses; clinical implications and knowledge gaps for future research, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.706583
Wang, Y., Ge, F., Wang, J., et al., Mycobacterium bovis BCG given at birth followed by inactivated respiratory syncytial virus vaccine prevents vaccine-enhanced disease by promoting trained macrophages and resident memory T cells, J. Virol., 2023, vol. 97, no. 3. https://doi.org/10.1128/jvi.01764-22
Blok, B.A., Arts, R.J.W., van Crevel, R., et al., Differential effects of BCG vaccine on immune responses induced by vi polysaccharide typhoid fever vaccination: an explorative randomized trial, Eur. J. Clin. Microbiol. Infect. Dis., 2020, vol. 39, no. 6, pp. 1177—1184. https://doi.org/10.1007/s10096-020-03813-y
Article CAS PubMed PubMed Central Google Scholar
Gillard, J., Blok, B.A., Garza, D.R., et al., BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial, NPJ Vaccines, 2022, vol. 7, no. 1, p. 21. https://doi.org/10.1038/s41541-022-00438-4
Article CAS PubMed PubMed Central Google Scholar
Kleinnijenhuis, J., Quintin, J., Preijers, F., et al., Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity, J. Innate Immun., 2014, vol. 6, no. 2, pp. 152—158. https://doi.org/10.1159/000355628
Article CAS PubMed Google Scholar
Moorlag, S.J., Folkman, L., Ter Horst, R., et al., Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity, Immunity, 2024, vol. 57, no. 1, pp. 171—187. https://doi.org/10.1016/j.immuni.2023.12.005
留言 (0)