Induction of Trained Immunity by BCG: Recent Data and Opinions

Huang, C., Wang, Y., Li, X., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 2020, vol. 395, no. 10223, pp. 497—506. https://doi.org/10.1016/S0140-6736(20)30183-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaman, J. and Galanti, M., Will SARS-CoV-2 become endemic?, Science, 2020, vol. 370, no. 6516, pp. 527—529. https://doi.org/10.1126/science.abe5960

Article  CAS  PubMed  Google Scholar 

Otto, S.P., MacPherson, A., and Colijn, C., Endemic does not mean constant as SARS-CoV-2 continues to evolve, Evolution, 2024, vol. 10. https://doi.org/10.1093/evolut/qpae041

Soheili, M., Khateri, S., Moradpour, F., et al., The efficacy and effectiveness of COVID-19 vaccines around the world: a mini-review and meta-analysis, Ann. Clin. Microbiol. Antimicrob., 2023, vol. 22, no. 1, p. 42. https://doi.org/10.1186/s12941-023-00594-y

Article  PubMed  PubMed Central  Google Scholar 

Netea, M.G., van der Meer, J.W., and van Crevel, R., BCG vaccination in health care providers and the protection against COVID-19, J. Clin. Invest., 2021, vol. 131, no. 2. https://doi.org/10.1172/JCI145545

Aaby, P., Benn, C.S., Flanagan, K.L., et al., The non-specific and sex-differential effects of vaccines, Nat. Rev. Immunol., 2020, vol. 20, no. 8, pp. 464—470. https://doi.org/10.1038/s41577-020-0338-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higgins, J.P., Soares-Weiser, K., Lopez-Lopez, J.A., et al., Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review, BMJ, 2016, vol. 355. https://doi.org/10.1136/bmj.i5170

Baydemir, I., Dulfer, E.A., Netea, M.G., and Dominguez-Andres, J., Trained immunity-inducing vaccines: harnessing innate memory for vaccine design and delivery, Clin. Immunol., 2024, vol. 261. https://doi.org/10.1016/j.clim.2024.109930

Shann, F., The non-specific effects of vaccines, Arch. Dis. Child., 2010, vol. 95, no. 9, pp. 662—667. https://doi.org/10.1136/adc.2009.157537

Article  PubMed  Google Scholar 

Stensballe, L.G., Nante, E., Jensen, I.P., et al., Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case—control study, Vaccine, 2005, vol. 23, no. 10, pp. 1251—1257. https://doi.org/10.1016/j.vaccine.2004.09.006

Article  CAS  PubMed  Google Scholar 

Nemes, E., Geldenhuys, H., Rozot, V., et al., Prevention of M. tuberculosis, infection with H4:IC31 vaccine or BCG revaccination, N. Engl. J. Med., 2018, vol. 379, no. 2, pp. 138—149. https://doi.org/10.1056/NEJMoa1714021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giamarellos-Bourboulis, E.J., Tsilika, M., Moorlag, S., et al., Activate: randomized clinical trial of BCG vaccination against infection in the elderly, Cell, 2020, vol. 183, no. 2, pp. 315—323. https://doi.org/10.1016/j.cell.2020.08.051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, J.C., Ganguly, R., and Waldman, R.H., Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin, J. Infect. Dis., 1977, vol. 136, no. 2, pp. 171—175. https://doi.org/10.1093/infdis/136.2.171

Article  CAS  PubMed  Google Scholar 

Kleinnijenhuis, J., Quintin, J., Preijers, F., et al., Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 43, pp. 17537—17542. https://doi.org/10.1073/pnas.1202870109

Article  PubMed  PubMed Central  Google Scholar 

Cirovic, B., de Bree, L.C.J., Groh, L., et al., BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment, Cell Host Microbe, 2020, vol. 28, no. 2, pp. 322—334. https://doi.org/10.1016/j.chom.2020.05.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arts, R.J.W., Moorlag, S., Novakovic, B., et al., BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity, Cell Host Microbe, 2018, vol. 23, no. 1, pp. 89—100. https://doi.org/10.1016/j.chom.2017.12.010

Article  CAS  PubMed  Google Scholar 

Rivas, M.N., Ebinger, J.E., Wu, M., et al., BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers, J. Clin. Invest., 2021, vol. 131, no. 2. https://doi.org/10.1172/JCI145157

Escobar, L.E., Molina-Cruz, A., and Barillas-Mury, C., BCG vaccine protection from severe coronavirus disease 2019 (COVID-19), Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 30, pp. 17720—17726. https://doi.org/10.1073/pnas.2008410117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berg, M.K., Yu, Q., Salvador, C.E., et al., Mandated Bacillus Calmette-Guerin (BCG) vaccination predicts flattened curves for the spread of COVID-19, Sci. Adv., 2020, vol. 6, no. 32. https://doi.org/10.1126/sciadv.abc1463

Hamiel, U., Kozer, E., and Youngster, I., SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults, JAMA, 2020, vol. 323, no. 22, pp. 2340—2341. https://doi.org/10.1001/jama.2020.8189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moorlag, S., van Deuren, R.C., van Werkhoven, C.H., et al., Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: a retrospective cohort study, Cell. Rep. Med., 2020, vol. 1, no. 5. https://doi.org/10.1016/j.xcrm.2020.100073

Amirlak, L., Haddad, R., Hardy, J.D., et al., Effectiveness of booster BCG vaccination in preventing Covid-19 infection, Hum. Vaccin. Immunother., 2021, vol. 17, no. 11, pp. 3913—3915. https://doi.org/10.1080/21645515.2021.1956228

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pascolo, S., Vaccines against COVID-19: priority to mRNA-based formulations, Cells, 2021, vol. 10, no. 10. https://doi.org/10.3390/cells10102716

Sukhikh, G.T., Priputnevich, T.V., Ogarkova, D.A., et al., Sputnik light and Sputnik V vaccination is effective at protecting medical personnel from COVID-19 during the period of delta variant dominance, Vaccines, 2022, vol. 10, no. 11. https://doi.org/10.3390/vaccines10111804

Alekseenko, I.V., Vasilov, R.G., Kondrat’eva, L.G., The cellular and epigenetic aspects of trained immunity and prospects for creation of universal vaccines on the eve of more frequent pandemics, Russ. J. Genet., 2023, vol. 59, no. 9, pp. 851—868.

Article  CAS  Google Scholar 

Munoz-Wolf, N. and Lavelle, E.C., Promotion of trained innate immunity by nanoparticles, Semin. Immunol., 2021, vol. 56. https://doi.org/10.1016/j.smim.2021.101542

Hajishengallis, G., Netea, M.G., and Chavakis, T., Innate immune memory, trained immunity and nomenclature clarification, Nat. Immunol., 2023, vol. 24, no. 9, pp. 1393—1394. https://doi.org/10.1038/s41590-023-01595-x

Article  CAS  PubMed  Google Scholar 

Kaufmann, E., Sanz, J., Dunn, J.L., et al., BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis, Cell, 2018, vol. 172, nos. 1—2, pp. 176—190. https://doi.org/10.1016/j.cell.2017.12.031

Article  CAS  PubMed  Google Scholar 

Verma, D., Parasa, V.R., Raffetseder, J., et al., Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects, Sci. Rep., 2017, vol. 7, no. 1, p. 12305. https://doi.org/10.1038/s41598-017-12110-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, S., Saavedra-Avila, N.A., Tiwari, S., and Porcelli, S.A., A century of BCG vaccination: immune mechanisms, animal models, non-traditional routes and implications for COVID-19, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.959656

Murphy, D.M., Mills, K.H.G., and Basdeo, S.A., The effects of trained innate immunity on T cell responses; clinical implications and knowledge gaps for future research, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.706583

Wang, Y., Ge, F., Wang, J., et al., Mycobacterium bovis BCG given at birth followed by inactivated respiratory syncytial virus vaccine prevents vaccine-enhanced disease by promoting trained macrophages and resident memory T cells, J. Virol., 2023, vol. 97, no. 3. https://doi.org/10.1128/jvi.01764-22

Blok, B.A., Arts, R.J.W., van Crevel, R., et al., Differential effects of BCG vaccine on immune responses induced by vi polysaccharide typhoid fever vaccination: an explorative randomized trial, Eur. J. Clin. Microbiol. Infect. Dis., 2020, vol. 39, no. 6, pp. 1177—1184. https://doi.org/10.1007/s10096-020-03813-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillard, J., Blok, B.A., Garza, D.R., et al., BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial, NPJ Vaccines, 2022, vol. 7, no. 1, p. 21. https://doi.org/10.1038/s41541-022-00438-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleinnijenhuis, J., Quintin, J., Preijers, F., et al., Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity, J. Innate Immun., 2014, vol. 6, no. 2, pp. 152—158. https://doi.org/10.1159/000355628

Article  CAS  PubMed  Google Scholar 

Moorlag, S.J., Folkman, L., Ter Horst, R., et al., Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity, Immunity, 2024, vol. 57, no. 1, pp. 171—187. https://doi.org/10.1016/j.immuni.2023.12.005

Article  CAS  PubMed 

留言 (0)

沒有登入
gif