Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368(9548):1681–8. https://doi.org/10.1016/S0140-6736(06)69703-1.
Ramachandran A, Ma RC, Snehalatha C. Diabetes in Asia. Lancet. 2010;375(9712):408–18. https://doi.org/10.1016/S0140-6736(09)60937-5.
Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr. 2001;10(Suppl):S40–7.
Wang Q, Jensen HH, Johnson SR. China’s nutrient availability and sources, 1950–1991. Food Policy. 1993;18(5):403–13. https://doi.org/10.1016/0306-9192(93)90063-H.
Kim S, Moon S, Popkin BM. The nutrition transition in South Korea. Am J Clin Nutr. 2000;71(1):44–53. https://doi.org/10.1093/ajcn/71.1.44.
Nagao M, Asai A, Sugihara H, Oikawa S. Fat intake and the development of type 2 diabetes. Endocr J. 2015;62(7):561–72. https://doi.org/10.1507/endocrj.EJ15-0055.
Schemmel R, Mickelsen O, Gill JL. Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. J Nutr. 1970;100(9):1041–8. https://doi.org/10.1093/jn/100.9.1041.
West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am J Physiol. 1992;262(6 Pt 2):R1025–32. https://doi.org/10.1152/ajpregu.1992.262.6.R1025.
Rossmeisl M, Rim JS, Koza RA, Kozak LP. Variation in type 2 diabetes–related traits in mouse strains susceptible to diet-induced obesity. Diabetes. 2003;52(8):1958–66. https://doi.org/10.2337/diabetes.52.8.1958.
Levin BE, Triscari J, Sullivan AC. Relationship between sympathetic activity and diet-induced obesity in two rat strains. Am J Physiol. 1983;245(3):R364–71. https://doi.org/10.1152/ajpregu.1983.245.3.R364.
Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B. Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab. 2002;282(4):E834–42. https://doi.org/10.1152/ajpendo.00332.2001.
Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 1997;273(2 Pt 2):R725–30. https://doi.org/10.1152/ajpregu.1997.273.2.R725.
Levin BE, Govek EK, Dunn-Meynell AA. Reduced glucose-induced neuronal activation in the hypothalamus of diet-induced obese rats. Brain Res. 1998;808(2):317–9. https://doi.org/10.1016/s0006-8993(98)00839-7.
Le Foll C, Irani BG, Magnan C, Dunn-Meynell A, Levin BE. Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1351–7. https://doi.org/10.1152/ajpregu.00370.2009.
Article PubMed PubMed Central Google Scholar
Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol. 2004;286(1):R143–50. https://doi.org/10.1152/ajpregu.00393.2003.
Irani BG, Le Foll C, Dunn-Meynell AA, Levin BE. Ventromedial nucleus neurons are less sensitive to leptin excitation in rats bred to develop diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R521–7. https://doi.org/10.1152/ajpregu.90842.2008.
Ricci MR, Levin BE. Ontogeny of diet-induced obesity in selectively bred Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol. 2003;285(3):R610–8. https://doi.org/10.1152/ajpregu.00235.2003.
Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R941–8. https://doi.org/10.1152/ajpregu.00245.2002.
Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE. Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R981–6. https://doi.org/10.1152/ajpregu.00675.2004.
Levin BE. Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am J Physiol. 1999;276(2):R382–7. https://doi.org/10.1152/ajpregu.1999.276.2.R382.
Teske JA, Levine AS, Kuskowski M, Levine JA, Kotz CM. Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R889–99. https://doi.org/10.1152/ajpregu.00536.2005.
Irani BG, Dunn-Meynell AA, Levin BE. Altered hypothalamic leptin, insulin, and melanocortin binding associated with moderate-fat diet and predisposition to obesity. Endocrinology. 2007;148(1):310–6. https://doi.org/10.1210/en.2006-1126.
Horvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A. 2010;107(33):14875–80. https://doi.org/10.1073/pnas.1004282107.
Article PubMed PubMed Central Google Scholar
Nagao M, Asai A, Kawahara M, Nakajima Y, Sato Y, Tanimura K, et al. Selective breeding of mice for different susceptibilities to high fat diet-induced glucose intolerance: development of two novel mouse lines, selectively bred diet-induced glucose intolerance-prone and -resistant. J Diabetes Invest. 2012;3(3):245–51. https://doi.org/10.1111/j.2040-1124.2011.00175.x.
Nagao M, Esguerra JL, Wendt A, Asai A, Sugihara H, Oikawa S, et al. Selectively bred diabetes models: GK rats, NSY mice and ON mice. In: King A, editor., et al., Animal models of diabetes: methods and protocols. New York: Springer; 2020. p. 25–54.
Nagao M, Asai A, Inaba W, Kawahara M, Shuto Y, Kobayashi S, et al. Characterization of pancreatic islets in two selectively bred mouse lines with different susceptibilities to high-fat diet-induced glucose intolerance. PLoS ONE. 2014;9(1): e84725. https://doi.org/10.1371/journal.pone.0084725.
Article PubMed PubMed Central Google Scholar
Nagao M, Asai A, Eliasson L, Oikawa S. Selectively bred rodent models for studying the etiology of type 2 diabetes: Goto-Kakizaki rats and Oikawa-Nagao mice. Endocr J. 2023;70(1):19–30. https://doi.org/10.1507/endocrj.EJ22-0253.
Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes. 1995;44(8):863–70. https://doi.org/10.2337/diab.44.8.863.
Rosengren AH, Braun M, Mahdi T, Andersson SA, Travers ME, Shigeto M, et al. Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. Diabetes. 2012;61(7):1726–33. https://doi.org/10.2337/db11-1516.
Article PubMed PubMed Central Google Scholar
Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29(3):351–66. https://doi.org/10.1210/er.2007-0023.
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol (Lausanne). 2018;9:384. https://doi.org/10.3389/fendo.2018.00384.
Hoppa MB, Collins S, Ramracheya R, Hodson L, Amisten S, Zhang Q, et al. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab. 2009;10(6):455–65. https://doi.org/10.1016/j.cmet.2009.09.011.
留言 (0)