Abrarovna GN, Zakirovna RM, Abdumalikovna ND, Abrarovna AN (2021) Clinic-diagnostic aspects of modern biomarkers of early atherosclerosis and fibrotic activity of systemic scleroderma
Acharya UR, Faust O, Alvin A, Krishnamurthi G, Seabra JC, Sanches J, Suri JS (2013a) Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. J Comput Methods Progr Biomed 110(1):66–75
Acharya UR, Faust OS, Vinitha Molinari S, Filippo Garberoglio R, Suri JS (2011) Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms. J Technol Cancer Res Treat 10(4):371–380
Acharya UR, Mookiah MRK, Sree SV, Afonso D, Sanches J, Shafique S et al (2013) Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment. Med Biol Eng Comput 51(5):513–523
Acharya UR, Mookiah MRK, Sree SV, Yanti R, Martis R, Saba L et al (2014) Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification. J Ultraschall in der Medizin-Eur J Ultrasound 35(03):237–245
Acharya UR, Sree SV, Krishnan MMR, Krishnananda N, Ranjan S, Umesh P, Suri JS (2013c) Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput Methods Progr Biomed 112(3):624–632
Adhikari MC, Guin A, Chakraborty S, Sinhamahapatra P, Ghosh A (2012) Subclinical atherosclerosis and endothelial dysfunction in patients with early rheumatoid arthritis as evidenced by measurement of carotid intima-media thickness and flow-mediated vasodilatation: an observational study. Paper presented at the seminars in arthritis and rheumatism
Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A et al (2022). Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: a multicenter study using COVLIAS 2.0. J Comput Biol Med 105571
Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A et al (2022). Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: a multicenter study using COVLIAS 2.0. Comput Biol Med
Ahlehoff O, Gislason GH, Charlot M, Jørgensen C, Lindhardsen J, Olesen JB et al (2011) Psoriasis is associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. J Internal Med 270(2):147–157
Article PubMed CAS Google Scholar
Aktoz M, Yilmaztepe M, Tatli E, Turan FN, Ümit EG, Altun A (2011) Assessment of ventricular and left atrial mechanical functions, atrial electromechanical delay and P wave dispersion in patients with scleroderma. Cardiol J 18(3):261–269
Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM et al (2023) Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int 1–18
Alfieri V, Margaritopoulos GA (2019) Takayasu arteritis and Behçet. Pulm Manif Syst Dis 86:210
Almutairi H, Hassan GM, Datta A (2021) Detection of obstructive sleep apnoea by ECG signals using deep learning architectures. Paper presented at the 2020 28th European signal processing conference (EUSIPCO)
Amaya-Amaya J, Montoya-Sánchez L, Rojas-Villarraga A (2014) Cardiovascular involvement in autoimmune diseases. BioMed Res Int 2014
Amin J, Sharif M, Raza M, Saba T, Sial R, Shad SA (2020) Brain tumor detection: a long short-term memory (LSTM)-based learning model. Neural Comput Appl 32(20):15965–15973
Aminisani N, Azimi-Nezhad M, Shamshirgaran SM, Tabaei S, Tabaee SS (2024) Vitamin D deficiency and cardiovascular diseases: results from the Neyshabur Longitudinal Study on Ageing. Int Arch Health Sci
An Y, Tang K, Wang J (2021) Time-aware multi-type data fusion representation learning framework for risk prediction of cardiovascular diseases. IEEE/ACM Trans Comput Biol
Angum F, Khan T, Kaler J, Siddiqui L, Hussain A (2020) The prevalence of autoimmune disorders in women: a narrative review. Cureus 12(5)
Araki T, Ikeda N, Shukla D, Jain PK, Londhe ND, Shrivastava VK et al (2016) PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology. Comput Methods Progr Biomed 128:137–158
Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K et al (2019) Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation 140(16):1318–1330
Article PubMed PubMed Central CAS Google Scholar
Ausserwinkler M, Neumann HJ, Wernly B (2023) Rheumatoid arthritis and cardiovascular risk: keep it simple and compassionate. Rheumatol Int 43(8):1557–1558
Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. J Arterioscler Thromb Vasc Biol 34(8):1731–1738
Article PubMed CAS Google Scholar
Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. J IEEE Trans Neural Netw 5(2):157–166
Bertsias G, Cervera R, Boumpas DT (2012) Systemic lupus erythematosus: pathogenesis and clinical features. EULAR Textb Rheum Dis 5:476–505
Bezuidenhout JA, Pretorius E (2020) The central role of acute phase proteins in rheumatoid arthritis: involvement in disease autoimmunity, inflammatory responses, and the heightened risk of cardiovascular disease. Paper presented at the seminars in thrombosis and hemostasis
Bijl M (2003) Endothelial activation, endothelial dysfunction and premature atherosclerosis in systemic autoimmune diseases. Neth J Med 61(9):273–277
Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Cuadrado-Godia E et al (2019) State-of-the-art review on deep learning in medical imaging. Front Biosci (Landmark Ed) 24:392–426
Biswas M, Saba L, Omerzu T, Johri AM, Khanna NN, Viskovic K et al (2021) A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: artificial intelligence framework. J Digit Imaging 34(3):581–604
Article PubMed PubMed Central Google Scholar
Boi A, Jamthikar AD, Saba L, Gupta D, Sharma A, Loi B et al (2018) A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography. J Curr Atheroscler Rep 20(7):1–17
Borbásné Sebestyén V, Szűcs G, Páll D, Ujvárosy D, Ötvös T, Csige I et al Electrocardiographic markers for the prediction of ventricular arrhythmias in patients with systemic sclerosis
Boskovic S, Borriello S, D’Ascenzo F, Sciamarrelli N, Rosset F, Mastorino L et al (2024) Effectiveness of biological therapy in reducing psoriasis-related cardiovascular risk. Taylor & Francis, pp 1–3
Cao F, He Y-S, Wang Y, Zha C-K, Lu J-M, Tao L-M et al (2023) Global burden and cross-country inequalities in autoimmune diseases from 1990 to 2019. Autoimmunity Rev 103326
Cao X, Zhao M, Li H, Xu D, Li M, Zhang X et al (2021) Three new inflammatory markers C reactive protein to albumin ratio, neutrophil to lymphocyte ratio, and platelet to lymphocyte ratio correlated with relapsing polychondritis disease activity index. Clin Rheumatol 40(11):4685–4691
Cerasuolo P, De Lorenzis E, Natalello G, Verardi L, Alonzi G, Fiore S et al (2023) POS1289 Machine learning algorithm as a useful tool in the grey area of cardiopulmonary mortality in systemic sclerosis. BMJ Publishing Group Ltd.
Chakraborty T, KS UR, Naik SM, Panja M, Manvitha B (2024) Ten years of generative adversarial nets (GANs): a survey of the state-of-the-art. Mach Learn Sci Technol 5(1):011001
Ciftci O, Onat AM, Yavuz B, Akdogan A, Aytemir K, Tokgozoglu L et al (2007) Cardiac repolarization abnormalities and increased sympathetic activity in scleroderma. J Natl Med Assoc 99(3):232
PubMed PubMed Central Google Scholar
Cobo-Ibáñez T, Descalzo MÁ, Loza-Santamaría E, Carmona L, Muñoz-Fernández S (2014) Serious infections in patients with rheumatoid arthritis and other immune-mediated connective tissue diseases exposed to anti-TNF or rituximab: data from the Spanish registry BIOBADASER 2.0. Rheumatol Int 34:953–961
Condoleo V, Pelaia C, Armentaro G, Severini G, Clausi E, Cassano V et al (2021) Role of vitamin D in cardiovascular diseases. Endocrines 2(4):417–426
Cucuruzac R, Marton E, Hodas R, Blendea C, Pirvu M, Benedek A, Benedek T (2018) Impact of pulmonary arterial hypertension on left ventricular function—a comparative study between scleroderma and coronary artery disease. J Interdiscipl Med 3(3):173–180
Dimitriadis SI, Liparas D, Initiative ASDN (2018) How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer’s disease: from Alzheimer’s disease neuroimaging initiative (ADNI) database. J Neural Regener Res 13(6):962
Dolcino M, Tinazzi E, Puccetti A, Lunardi C (2019) In systemic sclerosis, a unique long non coding RNA regulates genes and pathways involved in the three main features of the disease (vasculopathy, fibrosis and autoimmunity) and in carcinogenesis. J Clin Med 8(3):320
Article PubMed PubMed Central CAS Google Scholar
Durá-Travé T, Gallinas-Victoriano F (2024) Autoimmune thyroiditis and vitamin D. Int J Mol Sci 25(6):3154
Article PubMed PubMed Central Google Scholar
Durstewitz D (2017) A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. J PLoS Comput Biol 13(6):e1005542
Eder L, Dey A, Joshi AA, Boehncke W-H, Mehta NN, Szentpetery A (2019) Cardiovascular diseases in psoriasis and psoriatic arthritis. J Rheumatol Suppl 95:20–27
Article PubMed CAS Google Scholar
Ejiri K, Akagi S, Ito H (2023) Woman in her 50s with pulmonary hypertension associated with Takayasu arteritis. JAMA Cardiol 8(8):792–792
El-Baz A, Gimel’farb G, Suri JS (2015) Stochastic modeling for medical image analysis. CRC Press, Boca Raton
Fazeli MS, Khaychuk V, Wittstock K, Breznen B, Crocket G, Pourrahmat M-M, Ferri L (2021) Cardiovascular disease in rheumatoid arthritis: risk factors, autoantibodies, and the effect of antirheumatic therapies. Clin Med Insights Arthritis Musculoskelet Disord 14:11795441211028752
Article PubMed PubMed Central Google Scholar
Fent GJ, Greenwood JP, Plein S, Buch MH (2017) The role of non-invasive cardiovascular imaging i
留言 (0)