1. Wax M, Yang J, Tezel G. Autoantibodies in glaucoma. Curr Eye Res 2002;25:113–116.
2. Quaranta L, Bruttini C, Micheletti E, Konstas AG, Michelessi M, Oddone F, et al. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021;66:693–713.
3. Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog Retin Eye Res 2006;25:4905–4913.
4. Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the lamina cribrosa: Mechanisms and potential therapeutic approaches for glaucoma. Int J Mol Sci 2022;23:8068.
5. Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid Med Cell Longev 2017;2017:9208489.
6. Nucci C, Di Pierro D, Varesi C, Ciuffoletti E, Russo R, Gentile R, et al. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol Vis 2013;19:1841–1846.
7. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39:175–191.
8. Chapter 4 Open-Angle Glaucoma in Basic and clinical science course, Book 10: Glaucoma, American Academy of Ophthalmology, USA, 2016–2017.
9. Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 2012;31:702–719.
10. Zhao J, Wang S, Zhong W, Yang B, Sun L, Zheng Y. Oxidative stress in the trabecular meshwork [Review]. Int J Mol Med 2016;38:995–1002.
11. Yang X, Hondur G, Tezel G. Antioxidant treatment limits neuroinflammation in experimental glaucoma. Invest Ophthalmol Vis Sci 2016;57:2344–2354.
12. Pinazo-Durán M, Shoaie-Nia K, Zanón-Moreno V, Sanz- Gonzalez SM, del Castillo JB, Garcia-Medina JJ. Strategies to reduce oxidative stress in glaucoma patients. Curr Neuropharmacol 2017;16:903–918.
13. Hondur G, Goktas E, Yang X, Al-Aswad L, Auran JD, Blumberg DM, et al. Oxidative stress-related molecular biomarker candidates for glaucoma. Invest Ophthalmol Vis Sci 2017;58:4078–4088.
14. Erdurmus M, Yagcı R, Atis Ö, Karadağ R, Akbaş A, Hepşen İF. Antioxidant status and oxidative stress in primary open angle glaucoma and pseudoexfoliative glaucoma. Curr Eye Res 2011;36:713–718.
15. Engin KN, Yemisci B, Yigit U, Ağaçhan A, Coşkun C. Variability of serum oxidative stress biomarkers relative to biochemical data and clinical parameters of glaucoma patients. Mol Vis 2010;16:1260–1271.
16. Himori N, Kunikata H, Shiga Y, Omodaka K, Maruyama K, Takahashi H, et al. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2016;254:333–341.
17. Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC, Bassi AM, et al. Neuroinflammation in primary open-angle glaucoma. J Clin Med 2020;9:3172.
18. Aslan M, Dogan S, Kucuksayan E. Oxidative stress and potential applications of free radical scavengers in glaucoma. Redox Rep 2013;18:76–87.
19. Naguib S, Backstrom JR, Gil M, Calkins DJ, Rex TS. Retinal oxidative stress activates the NRF2/ARE pathway: An early endogenous protective response to ocular hypertension. Redox Biol 2021;42:101883.
20. Kim JA, Kim TW, Lee EJ, Girard MJ, Mari JM. Comparison of lamina cribrosa morphology in eyes with ocular hypertension and normal-tension glaucoma. Invest Ophthalmol Vis Sci 2020;61:4.
21. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One. 2010 Mar;5(3):e9505.
22. White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, et al. Alzheimer’s associated β-Amyloid protein inhibits influenza a virus and modulates viral interactions with phagocytes. PLoS One 2014;9:e101364.
23. Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 2015;16:85–98.
24. Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H. Vitreous fluid levels of beta-amyloid ((1–42)) and tau in patients with retinal diseases. Jpn J Ophthalmol 2005;49:106–108.
25. Ratnayaka JA, Serpell LC, Lotery AJ. Dementia of the eye: The role of amyloid beta in retinal degeneration. Eye (Lond) 2015;29:1013–1026.
26. Ito Y, Shimazawa M, Tsuruma K, Mayama C, Ishii K, Onoe H, et al. Induction of amyloid-β(1–42) in the retina and optic nerve head of chronic ocular hypertensive monkeys. Mol Vis 2012;18:2647–2657.
27. Ning A, Cui J, To E, Ashe KH, Matsubara J. Amyloidbeta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 2008;49:5136–5143.
28. Cappelli F, Caudano Marenco M, Testa V, Masala A, Sindaco D, Macri A, et al. Evaluating the correlation between Alzheimer’s amyloid-β peptides and glaucoma in human aqueous humor. Transl Vis Sci Technol 2020;9:21.
29. Libiger O, Shaw LM, Watson MH, Nairn AC, Uma na KL, Biarnes MC, et al. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer’s disease. Alzheimers Dement 2021;17:1976–1987.
30. Hendrickson RC, Lee AY, Song Q, Liaw A, Wiener M, Paweletz CP, et al. High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer’s disease in human cerebrospinal fluid. PLoS One 2015;10:e0135365.
31. Wildsmith KR, Schauer SP, Smith AM, Arnott D, Zhu Y, Haznedar J, et al. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol Neurodegener 2014;9:22.
32. Spellman DS, Wildsmith KR, Honigberg LA, Tuefferd M, Baker D, Raghavan N, et al. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer’s Disease Neuroimaging Initiative (ADNI) CSF. Proteomics Clin Appl 2015;9:715–731.
留言 (0)