Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K, Kissel JT, Nagendran S, L’Italien J, Sproule DM, Wells C, Cardenas JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377:1713–1722. https://doi.org/10.1056/NEJMoa1706198
Stevens D, Claborn MK, Gildon BL, Kessler TL, Walker C (2020) Onasemnogene abeparvovec-xioi: gene therapy for spinal muscular atrophy. Ann Pharmacother. https://doi.org/10.1177/1060028020914274
Article PubMed PubMed Central Google Scholar
Bridwell KH, Baldus C, Iffrig TM, Lenke LG, Blanke K (1999) Process measures and patient/parent evaluation of surgical management of spinal deformities in patients with progressive flaccid neuromuscular scoliosis (Duchenne’s muscular dystrophy and spinal muscular atrophy). Spine 24:1300–1309. https://doi.org/10.1097/00007632-199907010-00006
Boulay C, Peltier E, Jouve JL, Pesenti S (2020) Functional and surgical treatments in patients with spinal muscular atrophy (SMA). Arch Pediatr 27:7S35-37S39. https://doi.org/10.1016/S0929-693X(20)30275-X
Wirth B, Karakaya M, Kye MJ, Mendoza-Ferreira N (2020) Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 21:231–261. https://doi.org/10.1146/annurev-genom-102319-103602
Jedrzejowska M, Kostera-Pruszczyk A (2020) Spinal muscular atrophy–new therapies, new challenges. Neurol Neurochir Pol 54:8–13. https://doi.org/10.5603/PJNNS.a2019.0068
Schorling DC, Pechmann A, Kirschner J (2020) Advances in treatment of spinal muscular atrophy–new phenotypes, new challenges, new implications for care. J Neuromuscul Dis 7:1–13. https://doi.org/10.3233/JND-190424
Article PubMed PubMed Central Google Scholar
Vu-Han TL, Reisener MJ, Putzier M, Pumberger M (2021) Scoliosis in spinal muscular atrophy. Orthopade 50:657–663. https://doi.org/10.1007/s00132-021-04131-7
Granata C, Cervellati S, Ballestrazzi A, Corbascio M, Merlini L (1993) Spine surgery in spinal muscular atrophy: long-term results. Neuromuscul Disord 3:207–215. https://doi.org/10.1016/0960-8966(93)90061-n
D’Amico A, Mercuri E, Tiziano FD, Bertini E (2011) Spinal muscular atrophy. Orphanet J Rare Dis 6:71. https://doi.org/10.1186/1750-1172-6-71
Article PubMed PubMed Central Google Scholar
Ioos C, Leclair-Richard D, Mrad S, Barois A, Estournet-Mathiaud B (2004) Respiratory capacity course in patients with infantile spinal muscular atrophy. Chest 126:831–837. https://doi.org/10.1378/chest.126.3.831
Chong HS, Moon ES, Park JO, Kim DY, Kho PA, Lee HM, Moon SH, Kim YS, Kim HS (2011) Value of preoperative pulmonary function test in flaccid neuromuscular scoliosis surgery. Spine 36:E1391-1394. https://doi.org/10.1097/BRS.0b013e31820cd489
Hughes MS, Swarup I, Makarewich CA, Williams BA, Talwar D, Cahill PJ, Flynn JM, Anari JB (2020) Expert consensus for early onset scoliosis surgery. J Pediatr Orthop 40:e621–e628. https://doi.org/10.1097/BPO.0000000000001473
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, Consortium RE (2019) The REDCap consortium: Building an international community of software platform partners. J Biomed Inform 95:103208. https://doi.org/10.1016/j.jbi.2019.103208
Article PubMed PubMed Central Google Scholar
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381. https://doi.org/10.1016/j.jbi.2008.08.010
Karkenny AJ, Magee LC, Landrum MR, Anari JB, Spiegel D, Baldwin K (2021) The variability of pelvic obliquity measurements in patients with neuromuscular scoliosis. JB JS Open Access. https://doi.org/10.2106/JBJS.OA.20.00143
Article PubMed PubMed Central Google Scholar
Van Rossum G, Drake FL (2009) Python 3 reference manual. Create space, scotts valley, CA
Waskom ML (2021) Seaborn: statistical data visualization. J Open Sour Softw 6:3021. https://doi.org/10.21105/joss.03021
Hunter JD (2007) Matplotlib: A 2E graphics environment. Comput Sci Eng IEEE Comput Soc 9:90–5. https://doi.org/10.1109/MCSE.2007.55
McKinney W (2010) Data structures for statistical computing in python, pandas. DataFrame.corr. Pandas https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
Dangouloff T, Servais L (2019) Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag 15:1153–1161. https://doi.org/10.2147/TCRM.S172291
Article PubMed PubMed Central Google Scholar
Dangouloff T, Vrscaj E, Servais L, Osredkar D, Group SNWS (2021) Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscul Disord 31:574–582. https://doi.org/10.1016/j.nmd.2021.03.007
Weiß C, Ziegler A, Becker LL, Johannsen J, Brennenstuhl H, Schreiber G, Flotats-Bastardas M, Stoltenburg C, Hartmann H, Illsinger S, Denecke J, Pechmann A, Müller-Felber W, Vill K, Blaschek A, Smitka M, van der Stam L, Weiss K, Winter B, Goldhahn K, Plecko B, Horber V, Bernert G, Husain RA, Rauscher C, Trollmann R, Garbade SF, Hahn A, von der Hagen M, Kaindl AM (2022) Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc Health 6:17–27. https://doi.org/10.1016/S2352-4642(21)00287-X
Finkel RS, Benatar M (2022) Pre-symptomatic spinal muscular atrophy: a proposed nosology. Brain 145:2247–2249. https://doi.org/10.1093/brain/awac125
Pierzchlewicz K, Kepa I, Podogrodzki J, Kotulska K (2021) Spinal muscular atrophy: the use of functional motor scales in the era of disease-modifying treatment. Child Neurol Open. https://doi.org/10.1177/2329048X211008725
Article PubMed PubMed Central Google Scholar
Fujak A, Raab W, Schuh A, Kress A, Forst R, Forst J (2012) Operative treatment of scoliosis in proximal spinal muscular atrophy: results of 41 patients. Arch Orthop Trauma Surg 132:1697–1706. https://doi.org/10.1007/s00402-012-1610-8
Fujak A, Raab W, Schuh A, Richter S, Forst R, Forst J (2013) Natural course of scoliosis in proximal spinal muscular atrophy type II and IIIa: descriptive clinical study with retrospective data collection of 126 patients. BMC Musculoskelet Disord 14:283. https://doi.org/10.1186/1471-2474-14-283
Article PubMed PubMed Central Google Scholar
Mercuri E, Lucibello S, Perulli M, Coratti G, de Sanctis R, Pera MC, Pane M, Montes J, de Vivo DC, Darras BT, Kolb SJ, Finkel RS (2020) Longitudinal natural history of type I spinal muscular atrophy: a critical review. Orphanet J Rare Dis 15:84. https://doi.org/10.1186/s13023-020-01356-1
Article PubMed PubMed Central Google Scholar
Cetik RM, Ovadia D, Mladenov K, Kruyt MC, Helenius I, Ahonen M, Studer D, Yazici M (2024) Safety and efficacy of growth-friendly instrumentation for early-onset scoliosis in patients with spinal muscular atrophy type 1 in the disease-modifying treatment era. J Child Orthop 18:26–32. https://doi.org/10.1177/18632521231214780
Hell AK, Braunschweig L, Tsaknakis K, von Deimling U, Luders KA, Hecker M, Lorenz HM (2020) Children with spinal muscular atrophy with prior growth-friendly spinal implants have better results after definite spinal fusion in comparison to untreated patients. Neurosurgery. https://doi.org/10.1093/neuros/nyaa053
Kotwicki T, Jozwiak M (2008) Conservative management of neuromuscular scoliosis: personal experience and review of literature. Disabil Rehabil 30:792–798. https://doi.org/10.1080/09638280801889584
留言 (0)