Effects of short-term high-intensity exercise on oxidative stress and antioxidant levels in healthy young males

Liang W, Wang X, Cheng S, Jiao J, Zhu X, Duan Y. Effects of High-Intensity Interval Training on the Parameters Related to Physical Fitness and Health of Older Adults: A Systematic Review and Meta-Analysis. Sports Medicine - Open, 2024;10(1): 98. https://doi.org/10.1186/s40798-024-00767-9

Xu Y, Li Y, Wang C, Han T, Wu Y, Wang S, et al. Clinical value and mechanistic analysis of HIIT on modulating risk and symptoms of depression: A systematic review. International Journal of Clinical and Health Psychology, 2024;24(1): 100433. https://doi.org/10.1016/j.ijchp.2023.100433

K B S, Vaishali K, Kadavigere R, Sukumar S, K N S, Pullinger SA, et al. Effects of high-intensity interval training versus moderate-intensity continuous training on vascular function among individuals with overweight and obesity—a systematic review. International Journal of Obesity, 2024;48(11): 1517–1533. https://doi.org/10.1038/s41366-024-01586-4

Stankovic M, Djordjevic D, Trajkovic N, Milanovic Z. Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Medicine - Open, 2023;9(1): 78. https://doi.org/10.1186/s40798-023-00623-2

Sindorf MAG, Germano MD, Dias WG, Batista DR, Braz TV, Moreno MA, Lopes CR. Excess post-exercise oxygen consumption and substrate oxidation following high-intensity interval training: effects of recovery manipulation. Int J Exerc Sci. 2021;14(2):1151–65. https://doi.org/10.70252/ZMFO1216

Clausen RD, Astorino TA. Excess post-exercise oxygen consumption after reduced exertion high-intensity interval training on the cycle ergometer and rowing ergometer. European Journal of Applied Physiology, 2024;124(3): 815–825. https://doi.org/10.1007/s00421-023-05309-x

Rajizadeh MA, Hosseini MH, Bahrami M, Bahri F, Rostamabadi F, Bagheri F, et al. High-intensity intermittent training ameliorates methotrexate-induced acute lung injury. BMC Pulmonary Medicine, 2024;24(1): 45. https://doi.org/10.1186/s12890-024-02853-w

Mohideen K, Chandrasekaran K, M K, T J, Dhungel S, Ghosh S. Assessment of Antioxidant Enzyme Superoxide Dismutase (SOD) in Oral Cancer: Systematic Review and Meta-Analysis. Thatikonda S (ed.) Disease Markers, 2024;2024: 1–14. https://doi.org/10.1155/2024/2264251

Meng Q, Su CH. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants, 2024;13(5): 573. https://doi.org/10.3390/antiox13050573

Yoshikawa T, You F. Oxidative Stress and Bio-Regulation. International Journal of Molecular Sciences, 2024;25(6): 3360. https://doi.org/10.3390/ijms25063360

Asfandiyar, Hadi N, Ali Zaidi I, Kamal Z, . A, Ullah Khan R, et al. Estimation of Serum Malondialdehyde (a Marker of Oxidative Stress) as a Predictive Biomarker for the Severity of Coronary Artery Disease (CAD) and Cardiovascular Outcomes. Cureus, 2024; https://doi.org/10.7759/cureus.69756

Jiang L, Zhang Y, Wang Z, Wang Y. Acute interval running induces greater excess post-exercise oxygen consumption and lipid oxidation than isocaloric continuous running in men with obesity. Scientific Reports, 2024;14(1): 9178. https://doi.org/10.1038/s41598-024-59893-9

D’Haese S, Claes L, De Laat I, Van Campenhout S, Deluyker D, Heeren E, et al. Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients, 2024;16(3): 431. https://doi.org/10.3390/nu16030431

Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants, 2021;10(4): 537. https://doi.org/10.3390/antiox10040537

Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 2020;9(5): 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology, 2021;10(12): 1272. https://doi.org/10.3390/biology10121272

Wang F, Wang X, Liu Y, Zhang Z. Effects of Exercise‐Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Wu Y (ed.) Oxidative Medicine and Cellular Longevity, 2021;2021(1): 3846122. https://doi.org/10.1155/2021/3846122

Zhao Y, Sim YJ. Effects of muscle damage indicators and antioxidant capacity after interval training on the 800-m records of adolescent middle-distance runners. Journal of Exercise Rehabilitation, 2023;19(3): 181–186. https://doi.org/10.12965/jer.2346212.106

Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides – a randomized controlled trial. Frontiers in Nutrition, 2024;11: 1384112. https://doi.org/10.3389/fnut.2024.1384112

Molinari T, Molinari T, Rabello R, Rodrigues R. Effects of 8 weeks of high-intensity interval training or resistance training on muscle strength, muscle power and cardiorespiratory responses in trained young men. Sport Sciences for Health, 2022;18(3): 887–896. https://doi.org/10.1007/s11332-021-00872-2

Spada TC, Silva JMRD, Francisco LS, Marçal LJ, Antonangelo L, Zanetta DMT, et al. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. Remuzzi G (ed.) PLOS ONE, 2018;13(11): e0205791. https://doi.org/10.1371/journal.pone.0205791

Thirupathi A, Wang M, Lin JK, Fekete G, István B, Baker JS, et al. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. Olmedillas H (ed.) BioMed Research International, 2021;2021: 1–10. https://doi.org/10.1155/2021/1947928

Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci. 2018;12(3):88–93.

Higuchi M, Cartier L j., Chen M, Holloszy JO. Superoxide Dismutase and Catalase in Skeletal Muscle: Adaptive Response to Exercise. Journal of Gerontology, 1985;40(3): 281–286. https://doi.org/10.1093/geronj/40.3.281

Sousa CA, Zourdos MC, Storey AG, Helms ER. The Importance of Recovery in Resistance Training Microcycle Construction. Journal of Human Kinetics, 2024;91: 205–223. https://doi.org/10.5114/jhk/186659

Sarkar S, Debnath M, Das M, Bandyopadhyay A, Dey SK, Datta G. Effect of high intensity interval training on antioxidant status, inflammatory response and muscle damage indices in endurance team male players. Apunts Sports Medicine, 2021;56(210): 100352. https://doi.org/10.1016/j.apunsm.2021.100352

Zhang B, Zheng C, Hu M, Fang Y, Shi Y, Tse ACY, et al. The effect of different high-intensity interval training protocols on cardiometabolic and inflammatory markers in sedentary young women: A randomized controlled trial. Journal of Sports Sciences, 2024;42(8): 751–762. https://doi.org/10.1080/02640414.2024.2363708

Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International Journal of Environmental Research and Public Health, 2021;18(13): 7201. https://doi.org/10.3390/ijerph18137201

Poon ETC, Wongpipit W, Li HY, Wong SHS, Siu PM, Kong APS, et al. High-intensity interval training for cardiometabolic health in adults with metabolic syndrome: a systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 2024;58(21): 1267–1284. https://doi.org/10.1136/bjsports-2024-108481

Morcillo-Losa JA, Díaz-Martínez MDP, Ceylan Hİ, Moreno-Vecino B, Bragazzi NL, Párraga Montilla J. Effects of High-Intensity Interval Training on Muscle Strength for the Prevention and Treatment of Sarcopenia in Older Adults: A Systematic Review of the Literature. Journal of Clinical Medicine, 2024;13(5): 1299. https://doi.org/10.3390/jcm13051299

Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig PR, et al. Resistance training‐induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. The Journal of Physiology, 2016;594(18): 5209–5222. https://doi.org/10.1113/JP272472

Ben-Zeev T, Okun E. High-Intensity Functional Training: Molecular Mechanisms and Benefits. NeuroMolecular Medicine, 2021;23(3): 335–338. https://doi.org/10.1007/s12017-020-08638-8

Callahan MJ, Parr EB, Hawley JA, Camera DM. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism? Sports Medicine, 2021;51(3): 405–421. https://doi.org/10.1007/s40279-020-01397-3

Bloomer RJ, Goldfarb AH, Wideman L, McKenzie MJ, Consitt LA. Effects of Acute Aerobic and Anaerobic Exercise on Blood Markers of Oxidative Stress. The Journal of Strength and Conditioning Research, 2005;19(2): 276. https://doi.org/10.1519/14823.1

Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules, 2020;10(2): 320. https://doi.org/10.3390/biom10020320

Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Archives of Pharmacal Research, 2020;43(3): 286–296. https://doi.org/10.1007/s12272-019-01188-z

Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Medicine, 2024;54(5): 1097–1119. https://doi.org/10.1007/s40279-024-02007-2

Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, et al. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. European Journal of Nutrition, 2023;62(3): 1453–1466. https://doi.org/10.1007/s00394-023-03083-2

Powers SK, Goldstein E, Schrager M, Ji LL. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants, 2022;12(1): 39. https://doi.org/10.3390/antiox12010039

Henríquez-Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, et al. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nature Communications, 2019;10(1): 4623. https://doi.org/10.1038/s41467-019-12523-9

He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Frontiers in Physiology, 2016;7. https://doi.org/10.3389/fphys.2016.00486

Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. International Journal of Molecular Sciences, 2024;25(2): 1082. https://doi.org/10.3390/ijms25021082

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018;9(6): 7204–7218. https://doi.org/10.18632/oncotarget.23208

García‐López D, Häkkinen K, Cuevas MJ, Lima E, Kauhanen A, Mattila M, et al. Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle‐aged men. Scandinavian Journal of Medicine & Science in Sports, 2007;17(5): 595–604. https://doi.org/10.1111/j.1600-0838.2006.00620.x

留言 (0)

沒有登入
gif