Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson Disease: a review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360
Bloem BR, Okun MS, Klein C et al (2021) Parkinson’s disease. Lancet 397(10291):2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X
Article CAS PubMed Google Scholar
Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
Article CAS PubMed Google Scholar
Tolosa E, Garrido A, Scholz SW et al (2021) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20(5):385–397. https://doi.org/10.1016/S1474-4422(21)00030-2
Article CAS PubMed PubMed Central Google Scholar
He N, Ghassaban K, Huang P et al (2021) Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson’s disease. NeuroImage 230:117810. https://doi.org/10.1016/j.neuroimage.2021.117810
Article CAS PubMed Google Scholar
Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 202. https://doi.org/10.2214/AJR.13.11365
Jensen JH, Helpern JA (2010) MRI quantification of non-gaussian water diffusion by kurtosis analysis. NMR Biomed 23:698–710. https://doi.org/10.1002/nbm.1518
Article PubMed PubMed Central Google Scholar
Wang JJ, Lin WY, Lu CS et al (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261:210–217. https://doi.org/10.1148/radiol.11102277
Bai X, Zhou C, Guo T et al (2021) Progressive microstructural alterations in subcortical nuclei in Parkinson’s disease: a diffusion magnetic resonance imaging study. Parkinsonism Relat Disord 88:82–89. https://doi.org/10.1016/j.parkreldis.2021.06.003
Article CAS PubMed Google Scholar
Kamagata K, Zalesky A, Hatano T et al (2017) Gray Matter Abnormalities in Idiopathic Parkinson’s Disease: evaluation by Diffusional Kurtosis Imaging and Neurite Orientation Dispersion and Density Imaging. Hum Brain Mapp 38:3704–3722. https://doi.org/10.1002/hbm.23628
Article PubMed PubMed Central Google Scholar
Griffiths PD, Crossman AR (1993) Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia 4:61–65. https://doi.org/10.1159/000107298
Article CAS PubMed Google Scholar
Ghassaban K, Liu S, Jiang C et al (2019) Quantifying iron content in magnetic resonance imaging. NeuroImage 187:77–92. https://doi.org/10.1016/j.neuroimage.2018.04.047
Article CAS PubMed Google Scholar
Guan X, Xuan M, Gu Q et al (2017) Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping. NMR Biomed 30. https://doi.org/10.1002/nbm.3489
Guan J, Ma X, Geng Y et al (2019) Diffusion kurtosis imaging for detection of early brain changes in Parkinson’s Disease. Front Neurol 10:1285. https://doi.org/10.3389/fneur.2019.01285
Article PubMed PubMed Central Google Scholar
Azuma M, Hirai T, Yamada K et al (2016) Lateral asymmetry and spatial difference of Iron Deposition in the Substantia Nigra of patients with Parkinson Disease measured with quantitative susceptibility mapping. AJNR Am J Neuroradiol 37:782–788. https://doi.org/10.3174/ajnr.A4645
Article CAS PubMed PubMed Central Google Scholar
Tan S, Hartono S, Welton T et al (2021) Utility of quantitative susceptibility mapping and diffusion kurtosis imaging in the diagnosis of early Parkinson’s disease. Neuroimage Clin 32:102831. https://doi.org/10.1016/j.nicl.2021.102831
Article PubMed PubMed Central Google Scholar
Zhang J, Gao Y, He X et al (2021) Identifying Parkinson’s disease with mild cognitive impairment by using combined MR imaging and electroencephalogram. Eur Radiol 31(10):7386–7394. https://doi.org/10.1007/s00330-020-07575-1. Erratum in: Eur Radiol. 2022;32(2):1405–1406. doi: 10.1007/s00330-021-07757-5
Li Q, Dong F, Gai Q et al (2023) Diagnosis of major depressive disorder using machine learning based on Multisequence MRI neuroimaging features. J Magn Reson Imaging 58(5):1420–1430. https://doi.org/10.1002/jmri.28650
Zhang Q, Wang H, Shi Y, Li W (2024) White matter biomarker for predicting de novo Parkinson’s disease using tract-based spatial statistics: a machine learning-based model. Quant Imaging Med Surg 14(4):3086–3106. https://doi.org/10.21037/qims-23-1478
Article PubMed PubMed Central Google Scholar
Karapinar Senturk Z (2020) Early diagnosis of Parkinson’s disease using machine learning algorithms. Med Hypotheses 138:109603. https://doi.org/10.1016/j.mehy.2020.109603
Rong Y, Xu Z, Zhu Y et al (2022) Combination of quantitative susceptibility mapping and diffusion kurtosis imaging provides potential biomarkers for early-stage Parkinson’s Disease. ACS Chem Neurosci 13(18):2699–2708. https://doi.org/10.1021/acschemneuro.2c00321
Article CAS PubMed Google Scholar
Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184. https://doi.org/10.1136/jnnp.55.3.181
Article CAS PubMed PubMed Central Google Scholar
Chen S, Chan P, Sun S et al (2016) The recommendations of Chinese Parkinson’s disease and movement disorder society consensus on therapeutic management of Parkinson’s disease. Transl Neurodegener 5:12. https://doi.org/10.1186/s40035-016-0059-z
Article CAS PubMed PubMed Central Google Scholar
Yang L, Cheng Y, Sun Y et al (2022) Combined application of quantitative susceptibility mapping and diffusion kurtosis imaging techniques to investigate the Effect of Iron Deposition on Microstructural Changes in the brain in Parkinson’s Disease. Front Aging Neurosci 14:792778. https://doi.org/10.3389/fnagi.2022.792778
Article PubMed PubMed Central Google Scholar
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440. https://doi.org/10.1002/mrm.20508
Cicchetti DV (1994) Guidelines, Criteria, and rules of Thumb for evaluating normed and standardized Assessment instruments in psychology. Psychol Assess 6(4):284–290. https://doi.org/10.1037/1040-3590.6.4.284
Wang C, Zhang T, Wang P et al (2021) Bone metabolic biomarker-based diagnosis of type 2 diabetes osteoporosis by support vector machine. Ann Transl Med 9(4):316. https://doi.org/10.21037/atm-20-3388
Article CAS PubMed PubMed Central Google Scholar
Strobl C, Boulesteix AL, Zeileis A et al (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8:25. https://doi.org/10.1186/1471-2105-8-25
Article CAS PubMed PubMed Central Google Scholar
Du G, Lewis MM, Sica C et al (2018) Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson’s patients. Mov Disord 33(9):1423–1431. https://doi.org/10.1002/mds.27318
Article PubMed PubMed Central Google Scholar
Bergsland N, Zivadinov R, Schweser F et al (2019) Ventral posterior substantia Nigra iron increases over 3 years in Parkinson’s disease. Mov Disord 34(7):1006–1013. https://doi.org/10.1002/mds.27730
留言 (0)