Vannest J, Rajagopal A, Cicchino ND et al (2014) Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics 45:370–377. https://doi.org/10.1055/s-0034-1387816
Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51. https://doi.org/10.1186/1532-429X-15-51
Article PubMed PubMed Central Google Scholar
Taheri-Shirazi M, Namdar K, Ling K et al (2023) Exploring potential barriers in equitable access to pediatric diagnostic imaging using machine learning. Front Public Health 11:968319. https://doi.org/10.3389/fpubh.2023.968319
Article PubMed PubMed Central Google Scholar
Chong LR, Tsai KT, Lee LL et al (2020) Artificial intelligence predictive analytics in the management of outpatient MRI appointment no-shows. AJR Am J Roentgenol 215:1155–1162. https://doi.org/10.2214/AJR.19.22594
Drabkin MJ, Lobel S, Kanth N et al (2019) Telephone reminders reduce no-shows: a quality initiative at a breast imaging center. Clin Imaging 54:108–111. https://doi.org/10.1016/j.clinimag.2018.12.007
Roseland ME, Shankar PR, Houck G, Davenport MS (2022) Targeting missed care opportunities using modern communication methods: a quality improvement initiative to improve access to CT and MRI appointments. Acad Radiol 29:395–401. https://doi.org/10.1016/j.acra.2021.03.008
Liu C, Harvey HB, Jaworsky C et al (2017) Text message reminders reduce outpatient radiology no-shows but do not improve arrival punctuality. J Am Coll Radiol 14:1049–1054. https://doi.org/10.1016/j.jacr.2017.04.016
Sun Y-C, Wu H-M, Guo W-Y et al (2023) Simulation and evaluation of increased imaging service capacity at the MRI department using reduced coil-setting times. PLoS ONE 18:e0288546. https://doi.org/10.1371/journal.pone.0288546
Article CAS PubMed PubMed Central Google Scholar
Curtis C, Liu C, Bollerman TJ, Pianykh OS (2018) Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol 15:1310–1316. https://doi.org/10.1016/j.jacr.2017.08.021
Becker AS, Erinjeri JP, Chaim J et al (2022) Automatic forecasting of radiology examination volume trends for optimal resource planning and allocation. J Digit Imaging 35:1–8. https://doi.org/10.1007/s10278-021-00532-4
Bor DS, Sharpe RE, Bode EK et al (2021) Increasing patient access to MRI examinations in an integrated multispecialty practice. Radiographics 41:E1–E8. https://doi.org/10.1148/rg.2021200082
Bhuva AN, Feuchter P, Hawkins A et al (2019) MRI for patients with cardiac implantable electronic devices: simplifying complexity with a ‘one-stop’ service model. BMJ Qual Saf 28:853–858. https://doi.org/10.1136/bmjqs-2018-009079
Article PubMed PubMed Central Google Scholar
Doshi AM, Ostrow D, Gresens A et al (2023) Fast and frictionless: a novel approach to radiology appointment scheduling using a mobile app and recommendation engine. J Digit Imaging 36:1285–1290. https://doi.org/10.1007/s10278-023-00817-w
Article PubMed PubMed Central Google Scholar
Ganeshan S, Pierce L, Mourad M et al (2022) Impact of patient portal-based self-scheduling of diagnostic imaging studies on health disparities. J Am Med Inform Assoc 29:2096–2100. https://doi.org/10.1093/jamia/ocac152
Article PubMed PubMed Central Google Scholar
Elbeshlawi I, AbdelBaki MS (2018) Safety of gadolinium administration in children. Pediatr Neurol 86:27–32. https://doi.org/10.1016/j.pediatrneurol.2018.07.010
Ho M-L, Campeau NG, Ngo TD et al (2017) Pediatric brain MRI part 1: basic techniques. Pediatr Radiol 47:534–543. https://doi.org/10.1007/s00247-016-3776-7
Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719. https://doi.org/10.1148/rg.333125027
Balza R, Jaimes C, Risacher S et al (2019) Impact of a fast free-breathing 3-T abdominal MRI protocol on improving scan time and image quality for pediatric patients with tuberous sclerosis complex. Pediatr Radiol 49:1788–1797. https://doi.org/10.1007/s00247-019-04496-0
Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208. https://doi.org/10.1007/s00247-018-4116-x
Browne LP, Malone LJ, Englund EK et al (2022) Free-breathing magnetic resonance imaging with radial k-space sampling for neonates and infants to reduce anesthesia. Pediatr Radiol 52:1326–1337. https://doi.org/10.1007/s00247-022-05298-7
Geiger J, Zeimpekis KG, Jung A et al (2021) Clinical application of ultrashort echo-time MRI for lung pathologies in children. Clin Radiol 76:708.e9-708.e17. https://doi.org/10.1016/j.crad.2021.05.015
Article CAS PubMed Google Scholar
Hirsch FW, Sorge I, Vogel-Claussen J et al (2020) The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol 50:734–749. https://doi.org/10.1007/s00247-019-04594-z
Article PubMed PubMed Central Google Scholar
Wagner M, Böwing B, Kuth R et al (2001) Low field thoracic MRI—a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983. https://doi.org/10.1016/S0730-725X(01)00417-9
Article CAS PubMed Google Scholar
Rapp JB, Ho-Fung VM, Ramirez KI et al (2022) Dual-source computed tomography protocols for the pediatric chest — scan optimization techniques. Pediatr Radiol 53:1248–1259. https://doi.org/10.1007/s00247-022-05468-7
Jaramillo D, Laor T (2008) Pediatric musculoskeletal MRI: basic principles to optimize success. Pediatr Radiol 38:379–391. https://doi.org/10.1007/s00247-007-0645-4
Nguyen JC, Yi PH, Woo KM, Rosas HG (2019) Detection of pediatric musculoskeletal pathology using the fluid-sensitive sequence. Pediatr Radiol 49:114–121. https://doi.org/10.1007/s00247-018-4256-z
Chan KS, McBride D, Wild J et al (2024) A rapid MRI protocol for the evaluation of acute pediatric musculoskeletal infections: eliminating contrast and decreasing anesthesia, scan time, and hospital length of stay and charges. J Bone Joint Surg 106:700–707. https://doi.org/10.2106/JBJS.23.00564
Article CAS PubMed Google Scholar
Doria AS, Chaudry GA, Nasui C et al (2010) The use of parallel imaging for MRI assessment of knees in children and adolescents. Pediatr Radiol 40:284–293. https://doi.org/10.1007/s00247-009-1426-z
Chandra T, Chavhan GB, Sze RW et al (2019) Practical considerations for establishing and maintaining a magnetic resonance imaging safety program in a pediatric practice. Pediatr Radiol 49:458–468. https://doi.org/10.1007/s00247-019-04359-8
Sotardi ST, Degnan AJ, Liu CA et al (2021) Establishing a magnetic resonance safety program. Pediatr Radiol 51:709–715. https://doi.org/10.1007/s00247-020-04910-y
留言 (0)