Practical strategies to improve MRI operations and workflow in pediatric radiology

Vannest J, Rajagopal A, Cicchino ND et al (2014) Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics 45:370–377. https://doi.org/10.1055/s-0034-1387816

Article  PubMed  Google Scholar 

Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51. https://doi.org/10.1186/1532-429X-15-51

Article  PubMed  PubMed Central  Google Scholar 

Taheri-Shirazi M, Namdar K, Ling K et al (2023) Exploring potential barriers in equitable access to pediatric diagnostic imaging using machine learning. Front Public Health 11:968319. https://doi.org/10.3389/fpubh.2023.968319

Article  PubMed  PubMed Central  Google Scholar 

Chong LR, Tsai KT, Lee LL et al (2020) Artificial intelligence predictive analytics in the management of outpatient MRI appointment no-shows. AJR Am J Roentgenol 215:1155–1162. https://doi.org/10.2214/AJR.19.22594

Article  PubMed  Google Scholar 

Drabkin MJ, Lobel S, Kanth N et al (2019) Telephone reminders reduce no-shows: a quality initiative at a breast imaging center. Clin Imaging 54:108–111. https://doi.org/10.1016/j.clinimag.2018.12.007

Article  PubMed  Google Scholar 

Roseland ME, Shankar PR, Houck G, Davenport MS (2022) Targeting missed care opportunities using modern communication methods: a quality improvement initiative to improve access to CT and MRI appointments. Acad Radiol 29:395–401. https://doi.org/10.1016/j.acra.2021.03.008

Article  PubMed  Google Scholar 

Liu C, Harvey HB, Jaworsky C et al (2017) Text message reminders reduce outpatient radiology no-shows but do not improve arrival punctuality. J Am Coll Radiol 14:1049–1054. https://doi.org/10.1016/j.jacr.2017.04.016

Article  PubMed  Google Scholar 

Sun Y-C, Wu H-M, Guo W-Y et al (2023) Simulation and evaluation of increased imaging service capacity at the MRI department using reduced coil-setting times. PLoS ONE 18:e0288546. https://doi.org/10.1371/journal.pone.0288546

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curtis C, Liu C, Bollerman TJ, Pianykh OS (2018) Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol 15:1310–1316. https://doi.org/10.1016/j.jacr.2017.08.021

Article  PubMed  Google Scholar 

Becker AS, Erinjeri JP, Chaim J et al (2022) Automatic forecasting of radiology examination volume trends for optimal resource planning and allocation. J Digit Imaging 35:1–8. https://doi.org/10.1007/s10278-021-00532-4

Article  PubMed  Google Scholar 

Bor DS, Sharpe RE, Bode EK et al (2021) Increasing patient access to MRI examinations in an integrated multispecialty practice. Radiographics 41:E1–E8. https://doi.org/10.1148/rg.2021200082

Article  PubMed  Google Scholar 

Bhuva AN, Feuchter P, Hawkins A et al (2019) MRI for patients with cardiac implantable electronic devices: simplifying complexity with a ‘one-stop’ service model. BMJ Qual Saf 28:853–858. https://doi.org/10.1136/bmjqs-2018-009079

Article  PubMed  PubMed Central  Google Scholar 

Doshi AM, Ostrow D, Gresens A et al (2023) Fast and frictionless: a novel approach to radiology appointment scheduling using a mobile app and recommendation engine. J Digit Imaging 36:1285–1290. https://doi.org/10.1007/s10278-023-00817-w

Article  PubMed  PubMed Central  Google Scholar 

Ganeshan S, Pierce L, Mourad M et al (2022) Impact of patient portal-based self-scheduling of diagnostic imaging studies on health disparities. J Am Med Inform Assoc 29:2096–2100. https://doi.org/10.1093/jamia/ocac152

Article  PubMed  PubMed Central  Google Scholar 

Elbeshlawi I, AbdelBaki MS (2018) Safety of gadolinium administration in children. Pediatr Neurol 86:27–32. https://doi.org/10.1016/j.pediatrneurol.2018.07.010

Article  PubMed  Google Scholar 

Ho M-L, Campeau NG, Ngo TD et al (2017) Pediatric brain MRI part 1: basic techniques. Pediatr Radiol 47:534–543. https://doi.org/10.1007/s00247-016-3776-7

Article  PubMed  Google Scholar 

Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719. https://doi.org/10.1148/rg.333125027

Article  PubMed  Google Scholar 

Balza R, Jaimes C, Risacher S et al (2019) Impact of a fast free-breathing 3-T abdominal MRI protocol on improving scan time and image quality for pediatric patients with tuberous sclerosis complex. Pediatr Radiol 49:1788–1797. https://doi.org/10.1007/s00247-019-04496-0

Article  PubMed  Google Scholar 

Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208. https://doi.org/10.1007/s00247-018-4116-x

Article  PubMed  Google Scholar 

Browne LP, Malone LJ, Englund EK et al (2022) Free-breathing magnetic resonance imaging with radial k-space sampling for neonates and infants to reduce anesthesia. Pediatr Radiol 52:1326–1337. https://doi.org/10.1007/s00247-022-05298-7

Article  PubMed  Google Scholar 

Geiger J, Zeimpekis KG, Jung A et al (2021) Clinical application of ultrashort echo-time MRI for lung pathologies in children. Clin Radiol 76:708.e9-708.e17. https://doi.org/10.1016/j.crad.2021.05.015

Article  CAS  PubMed  Google Scholar 

Hirsch FW, Sorge I, Vogel-Claussen J et al (2020) The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol 50:734–749. https://doi.org/10.1007/s00247-019-04594-z

Article  PubMed  PubMed Central  Google Scholar 

Wagner M, Böwing B, Kuth R et al (2001) Low field thoracic MRI—a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983. https://doi.org/10.1016/S0730-725X(01)00417-9

Article  CAS  PubMed  Google Scholar 

Rapp JB, Ho-Fung VM, Ramirez KI et al (2022) Dual-source computed tomography protocols for the pediatric chest — scan optimization techniques. Pediatr Radiol 53:1248–1259. https://doi.org/10.1007/s00247-022-05468-7

Article  PubMed  Google Scholar 

Jaramillo D, Laor T (2008) Pediatric musculoskeletal MRI: basic principles to optimize success. Pediatr Radiol 38:379–391. https://doi.org/10.1007/s00247-007-0645-4

Article  PubMed  Google Scholar 

Nguyen JC, Yi PH, Woo KM, Rosas HG (2019) Detection of pediatric musculoskeletal pathology using the fluid-sensitive sequence. Pediatr Radiol 49:114–121. https://doi.org/10.1007/s00247-018-4256-z

Article  PubMed  Google Scholar 

Chan KS, McBride D, Wild J et al (2024) A rapid MRI protocol for the evaluation of acute pediatric musculoskeletal infections: eliminating contrast and decreasing anesthesia, scan time, and hospital length of stay and charges. J Bone Joint Surg 106:700–707. https://doi.org/10.2106/JBJS.23.00564

Article  CAS  PubMed  Google Scholar 

Doria AS, Chaudry GA, Nasui C et al (2010) The use of parallel imaging for MRI assessment of knees in children and adolescents. Pediatr Radiol 40:284–293. https://doi.org/10.1007/s00247-009-1426-z

Article  PubMed  Google Scholar 

Chandra T, Chavhan GB, Sze RW et al (2019) Practical considerations for establishing and maintaining a magnetic resonance imaging safety program in a pediatric practice. Pediatr Radiol 49:458–468. https://doi.org/10.1007/s00247-019-04359-8

Article  PubMed  Google Scholar 

Sotardi ST, Degnan AJ, Liu CA et al (2021) Establishing a magnetic resonance safety program. Pediatr Radiol 51:709–715. https://doi.org/10.1007/s00247-020-04910-y

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif