Evaluation of Tridax procumbens Secondary Metabolites Anti-Tuberculosis Activity by In Vitro and In Silico Methods

(2023) Global tuberculosis report 2023. https://www.who.int/publications/i/item/9789240083851

(2022) Global Tuberculosis reporT 2022. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022

(2021) GLOBAL TUBERCULOSIS REPORT 2021. https://www.who.int/publications/i/item/9789240037021

Anand PK, Kaul D, Sharma M (2006) Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages. Int J Biochem Cell Biol 38:600–609. https://doi.org/10.1016/j.biocel.2005.10.021

Article  CAS  PubMed  Google Scholar 

Sivakumar A, Jayaraman G (2011) Anti-tuberculosis activity of commonly used medicinal plants of south India. J Med Plant Res 5:6881–6884. https://doi.org/10.5897/JMPR11.1397

Article  Google Scholar 

Kumar M, Singh SK, Singh PP, et al (2021) Potential anti-mycobacterium tuberculosis activity of plant secondary metabolites: Insight with molecular docking interactions. Antioxidants 10. https://doi.org/10.3390/antiox10121990

Jimenez-Arellanes A, Meckes M, Ramirez R et al (2003) Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases. Phytother Res 17:903–908. https://doi.org/10.1002/ptr.1377

Article  PubMed  Google Scholar 

Gupta P, Bhatter P, D’souza D, et al (2014) Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. BMC Complement Altern Med 14:. https://doi.org/10.1186/1472-6882-14-84

Tolsarwad GS, Jamkhande PG,Biradar MM, Shinde SA. Anti-tubercular and antioxidant screening of Annona Reticulata Linn. and Borassus Flabellifer Linn. Innov Pharm Pharmacother 2020;8(3):89–96.

Molina-Salinas GM, Ramos-Guerra MC, Vargas-Villarreal J et al (2006) Bactericidal activity of organic extracts from Flourensia cernua DC against strains of Mycobacterium tuberculosis. Arch Med Res 37:45–49. https://doi.org/10.1016/j.arcmed.2005.04.010

Article  PubMed  Google Scholar 

Sawicki R, Golus J, Przekora A, et al (2018) Antimycobacterial activity of cinnamaldehyde in a mycobacterium tuberculosis(H37Ra) model. Molecules 23:. https://doi.org/10.3390/molecules23092381

Newton SM, Lau C, Gurcha SS, et al (2002) The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. https://doi.org/10.1016/S0378-8741(01)00350-6

Ingole V V., Mhaske PC, Katade SR (2022) Phytochemistry and pharmacological aspects of Tridax procumbens (L.): A systematic and comprehensive review. Phytomedicine Plus 2:. https://doi.org/10.1016/j.phyplu.2021.100199

Taddei A, Rosas-Romero AJ (2000) Bioactivity studies of extracts from Tridax procumbens. Phytomedicine 7:235–238. https://doi.org/10.1016/S0944-7113(00)80009-4

Article  CAS  PubMed  Google Scholar 

Kaushik D, Tanwar A, Davis J Ethnopharmacological and Phytochemical Studies of Tridax Procumbens Linn: A Popular Herb in Ayurveda Medicine.

Kondawar M, Bhagat VC, Kondawar MS (2019) ANTITUBERCULAR POTENTIAL OF DENDROPHTHOE FALCATE (L.) AND TRIDAX PROCUMBENS (L.) PLANTS EXTRACTS AGAINST H37Rv STAIN OF MYCOBACTERIA TUBERCULOSIS. Article in International Journal of Pharmaceutical Sciences and Research 10:251. https://doi.org/10.13040/IJPSR.0975-8232.10(1).251-59

Anna Pratima Nikalje *, Shradha Baheti, Smrutigandha Kamble, Subur Khan, Jayprakash Sangshetti (2017) ISOLATION OF PHYTO CONSTITUENTS FROM THE ROOTS OF COLEUS FORSKOHLII BY COLUMN AND FLASH CHROMATOGRAPHIC METHOD. https://doi.org/10.5281/ZENODO.269662

Hostettman K, Chinyanganga F, Maillard M, Wolfende JL (1996) Phytochemical studies of medicinal plants from Malawi. 336

Pharmacia Lettre D, Hegde K, Joshi AB (2010) Scholars Research Library Preliminary Phytochemical Screening and Antipyretic Activity of Carissa Spinarum Root Extract 2:255–260

Google Scholar 

Kokate CK, Purohit AP, Gokhale SB (2008) Pharmacognosy. 649

Ferreira L, Machado N, Gouvinhas I, et al (2022) Application of Fourier transform infrared spectroscopy (FTIR) techniques in the mid-IR (MIR) and near-IR (NIR) spectroscopy to determine n-alkane and long-chain alcohol contents in plant species and faecal samples. Spectrochim Acta A Mol Biomol Spectrosc 280:. https://doi.org/10.1016/j.saa.2022.121544

Ladokun OA, Abiola A, Okikiola D, Ayodeji F (2018) GC-MS and molecular docking studies of Hunteria umbellata methanolic extract as a potent anti-diabetic. Inform Med Unlocked 13:1–8. https://doi.org/10.1016/j.imu.2018.08.001

Article  Google Scholar 

Casuga FP, Castillo AL, Corpuz MJAT (2016) GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pac J Trop Biomed 6:957–961. https://doi.org/10.1016/j.apjtb.2016.08.015

Article  CAS  Google Scholar 

Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. https://doi.org/10.1016/S0023-6438(95)80008-5

Article  Google Scholar 

Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/j.jfca.2006.01.003

Article  CAS  Google Scholar 

Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

Article  CAS  PubMed  Google Scholar 

Mariita RM, Orodho JA, Okemo PO et al (2011) Methanolic extracts of Aloe secundiflora Engl. inhibits in vitro growth of tuberculosis and diarrhea-causing bacteria. Pharmacognosy Res 3:95–99. https://doi.org/10.4103/0974-8490.81956

Article  PubMed  PubMed Central  Google Scholar 

Collins LA, Franzblau SG (1997) Microplate Alamar Blue Assay versus BACTEC 460 System for High-Throughput Screening of Compounds against Mycobacterium tuberculosis and Mycobacterium avium. https://doi.org/10.1128/aac.41.5.1004

Zafar I, Hussain AI, Fatima T, et al (2022) Inter-Varietal Variation in Phenolic Profile, Sugar Contents, Antioxidant, Anti-Proliferative and Antibacterial Activities of Selected Brassica Species. Applied Sciences (Switzerland) 12:. https://doi.org/10.3390/app12125811

van Meerloo, J., Kaspers, G.J.L., Cloos, J. (2011). Cell Sensitivity Assays: The MTT Assay. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_20

Sabarees G, Velmurugan V, Solomon VR (2023) Discovery of new naphthyridine hybrids against enoyl-ACP reductase (inhA) protein target of Mycobacterium tuberculosis: Molecular docking, molecular dynamics simulations studies. Chemical Physics Impact 7. https://doi.org/10.1016/j.chphi.2023.100399

Sharbidre A, Dhage P, Duggal H, Meshram R (2021) In silico investigation of tridax procumbens phytoconstituents against sars-cov-2 infection. Biointerface Res Appl Chem 11:12120–12148. https://doi.org/10.33263/BRIAC114.1212012148

Shahidi F, Yeo JD (2018) Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci 19. https://doi.org/10.3390/ijms19061573

Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013. https://doi.org/10.1155/2013/162750

Shamsudin NF, Ahmed QU, Mahmood S, et al (2022) Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 27. https://doi.org/10.3390/molecules27041149

Nn S, Aa J, Oa I (2008) Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol 7:1797–1806. https://doi.org/10.5897/AJB07.613

Article  Google Scholar 

Chaudhari KS, Patel HM, Surana SJ (2017) Pyridines: Multidrug-resistant tuberculosis (MDR-TB) inhibitors. Indian Journal of Tuberculosis 64:119–128. https://doi.org/10.1016/j.ijtb.2016.11.012

Article  PubMed  Google Scholar 

Kuppusamy P, Ichwan SJA, Parine NR et al (2015) Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties. J Environ Sci (China) 29:151–157. https://doi.org/10.1016/j.jes.2014.06.050

Article  CAS  PubMed  Google Scholar 

Sukhikh S, Prosekov A, Ivanova S, et al (2022) Identification of Metabolites with Antibacterial Activities by Analyzing the FTIR Spectra of Microalgae. Life 12:. https://doi.org/10.3390/life12091395

Meng Y, Yao C, Xue S, Yang H (2014) Application of fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour Technol 151:347–354. https://doi.org/10.1016/j.biortech.2013.10.064

Article  CAS  PubMed  Google Scholar 

Dalal SR, Hussein MH, El-Naggar NEA, et al (2021) Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Sci Rep 11:. https://doi.org/10.1038/s41598-021-96202-0

Siswadi S, Saragih GS (2021) Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. In: AIP Conference Proceedings. American Institute of Physics Inc. https://doi.org/10.1063/5.0053057

Kusumah D, Wakui M, Murakami M et al (2020) Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus. Biosci Biotechnol Biochem 84:1285–1290. https://doi.org/10.1080/09168451.2020.1731299

Article  CAS  PubMed  Google Scholar 

Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D et al (2023) In Vivo Neuropharmacological Effects of Neophytadiene. Molecules. https://doi.org/10.3390/molecules28083457

Article  PubMed  PubMed Central  Google Scholar 

Islam MT, Ali ES, Uddin SJ et al (2018) Phytol: A review of biomedical activities. Food Chem Toxicol 121:82–94. https://doi.org/10.1016/j.fct.2018.08.032

Article  CAS  PubMed  Google Scholar 

Huang ZR, Lin YK, Fang JY (2009) Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 14:540–554. https://doi.org/10.3390/molecules14010540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wulandari AP, Nafisa ZK, Herlina T et al (2024) Metabolite profiling of potential bioactive fractions from ethanol extract of Boehmeria nivea flowers by GC–MS/MS analysis. Phytomedicine Plus 4:100557. https://doi.org/10.1016/j.phyplu.2024.100557

Article  Google Scholar 

Yan Z, Yang R, Jiang Y et al (2011) Induction of apoptosis in human promyelocytic leukemia HL60 cells by panaxynol and panaxydol. Molecules 16:5561–5573. https://doi.org/10.3390/molecules16075561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chanderraj P, Sundaram L International Journal of Botany Studies Computational identification of potential bioactive compound from Cassia auriculata against urinary tract infection causative pathogen E. coli

Tawde KV, Gacche RN, Pund MM (2012) Evaluation of selected Indian traditional folk medicinal plants against Mycobacterium tuberculosis with antioxidant and cytotoxicity study. Asian Pac J Trop Dis. https://doi.org/10.1016/S2222-1808(12)60244-8

Article  Google Scholar 

Jachak SM, Gautam R, Selvam C et al (2011) Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L. Fitoterapia 82:173–177. https://doi.org/10.1016/j.fitote.2010.08.016

Article  PubMed 

留言 (0)

沒有登入
gif