Dynamic 18 F-FDG PET to detect differences among patients with progressive and relapsing multiple sclerosis: a pilot study

Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907–911. https://doi.org/10.1212/wnl.46.4.907

Article  CAS  PubMed  Google Scholar 

Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712. https://doi.org/10.1093/brain/awh641

Article  PubMed  Google Scholar 

Cree BAC, Arnold DL, Chataway J et al (2021) Secondary progressive multiple sclerosis: New insights. Neurology 97:378–388. https://doi.org/10.1212/WNL.0000000000012323

Article  PubMed  PubMed Central  Google Scholar 

Mostert JP, Koch MW, Steen C et al (2010) T2 lesions and rate of progression of disability in multiple sclerosis. Eur J Neurol 17:1471–1475. https://doi.org/10.1111/j.1468-1331.2010.03093.x

Article  CAS  PubMed  Google Scholar 

Llufriu S, Kornak J, Ratiney H et al (2014) Magnetic resonance spectroscopy markers of Disease Progression in multiple sclerosis. JAMA Neurol 71:840–847. https://doi.org/10.1001/jamaneurol.2014.895

Article  PubMed  Google Scholar 

Zheng Y, Lee J-C, Rudick R, Fisher E (2018) Long-term magnetization transfer ratio evolution in multiple sclerosis White Matter lesions. J Neuroimaging 28:191–198. https://doi.org/10.1111/jon.12480

Article  PubMed  Google Scholar 

Polvinen E, Matilainen M, Nylund M et al (2023) TSPO-Detectable chronic active lesions predict Disease Progression in multiple sclerosis. Neurol - Neuroimmunol Neuroinflammation 10. https://doi.org/10.1212/NXI.0000000000200133

Wentling M, Lopez-Gomez C, Park H-J et al (2019) A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain 142:2756–2774. https://doi.org/10.1093/brain/awz201

Article  PubMed  Google Scholar 

Mathur D, López-Rodas G, Casanova B, Marti MB (2014) Perturbed glucose metabolism: insights into multiple sclerosis pathogenesis. Front Neurol 5:250. https://doi.org/10.3389/fneur.2014.00250

Article  PubMed  PubMed Central  Google Scholar 

Phelps ME, Huang SC, Hoffman EJ et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388. https://doi.org/10.1002/ana.410060502

Article  CAS  PubMed  Google Scholar 

Poutiainen P, Jaronen M, Quintana FJ, Brownell A-L (2016) Precision Medicine in multiple sclerosis: future of PET imaging of inflammation and reactive astrocytes. Front Mol Neurosci 9:85. https://doi.org/10.3389/fnmol.2016.00085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedj E, Varrone A, Boellaard R et al (2022) EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. Eur J Nucl Med Mol Imaging 49:632–651. https://doi.org/10.1007/s00259-021-05603-w

Article  PubMed  Google Scholar 

Sarkar S, Corwin MT, Olson KA et al (2019) Pilot study to diagnose nonalcoholic Steatohepatitis with dynamic 18 F-FDG PET. Am J Roentgenol 212:529–537. https://doi.org/10.2214/AJR.18.20012

Article  Google Scholar 

Coello C, Fisk M, Mohan D et al (2017) Quantitative analysis of dynamic 18F-FDG PET/CT for measurement of lung inflammation. EJNMMI Res 7:47. https://doi.org/10.1186/s13550-017-0291-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouter C, Henniges P, Franke TN et al (2019) 18F-FDG-PET detects drastic changes in Brain Metabolism in the Tg4–42 model of Alzheimer’s Disease. Front Aging Neurosci 10:425. https://doi.org/10.3389/fnagi.2018.00425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishiyama Y, Yamamoto Y, Monden T et al (2007) Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma. Eur J Nucl Med Mol Imaging 34:78–86. https://doi.org/10.1007/s00259-006-0153-z

Article  PubMed  Google Scholar 

Kimura N, Yamamoto Y, Kameyama R et al (2009) Diagnostic value of kinetic analysis using dynamic 18F-FDG-PET in patients with malignant primary brain tumor. Nucl Med Commun 30:602–609. https://doi.org/10.1097/MNM.0b013e32832e1c7d

Article  PubMed  Google Scholar 

Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

Article  PubMed  Google Scholar 

Reynders T, D’haeseleer M, De Keyser J et al (2017) Definition, prevalence and predictive factors of benign multiple sclerosis. eNeurologicalSci 7:37–43. https://doi.org/10.1016/j.ensci.2017.05.002

Article  PubMed  PubMed Central  Google Scholar 

Lorscheider J, Buzzard K, Jokubaitis V et al (2016) Defining secondary progressive multiple sclerosis. Brain 139:2395–2405. https://doi.org/10.1093/brain/aww173

Article  PubMed  Google Scholar 

Thomas BA, Cuplov V, Bousse A et al (2016) PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol 61:7975. https://doi.org/10.1088/0031-9155/61/22/7975

Article  PubMed  Google Scholar 

Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations - Clifford, Patlak S, Blasberg RG (1985) https://journals.sagepub.com/doi/https://doi.org/10.1038/jcbfm.1985.87. Accessed 12 Nov 2023

PMOD Technologies LLC – PMOD Technologies https://www.pmod.com/web/. Accessed 4 Jan 2024

Nijland PG, Molenaar RJ, van der Pol SMA et al (2015) Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol Commun 3:79. https://doi.org/10.1186/s40478-015-0261-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regenold WT, Phatak P, Makley MJ et al (2008) Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci 275:106–112. https://doi.org/10.1016/j.jns.2008.07.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Licht-Mayer S, Campbell GR, Canizares M et al (2020) Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol 140:143–167. https://doi.org/10.1007/s00401-020-02179-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Funfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. https://doi.org/10.1038/nature11007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin Landscape. Frontiers in Cellular Neuroscience

留言 (0)

沒有登入
gif