Antifungal, Antioxidant Activity, and GC–MS Profiling of Diaporthe amygdali GWS39: A First Report Endophyte from Geranium wallichianum

Jinxin Y, Ying W, Zheu H et al (2018) Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera. Microbiology 46:85–91. https://doi.org/10.1080/12298093.2018.1454008

Article  Google Scholar 

Silva-Hughes AF, Wedge DE, Cantrell CL et al (2015) Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol Res 175:67–77. https://doi.org/10.1016/j.micres.2015.03.007

Article  PubMed  Google Scholar 

Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2009) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. https://doi.org/10.1016/j.micres.2009.11.009

Article  CAS  Google Scholar 

Della Pepa T, Elshafie HS, Capasso R, De Feo V, Camele I, Nazzaro F, Scognamiglio MR, Caputo L (2019) Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana essential oils growing in Cilento (Southern Italy). Molecules 24:2576. https://doi.org/10.3390/molecules24142576

Article  CAS  PubMed  PubMed Central  Google Scholar 

Begum HA, Hamayun M, Shad N, Yaseen T, Asad F (2018) Nutritional analysis of some selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. Pure Appl Biol 7(3):955–964. https://doi.org/10.19045/bspab.2018.700114

Article  CAS  Google Scholar 

Mir WR, Bhat BA, Rather MA et al (2022) Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Sci Rep 12:12547. https://doi.org/10.1038/s41598-022-16102-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Begum HA, Asad F, Hamayun M, Murad W, Khan A, Yaseen T (2021) Antifungal activity of six medicinal plants of Pakistan against selected fungi. Bangladesh J Bot 50(2):441–443. https://doi.org/10.3329/bjb.v50i2.54105

Article  Google Scholar 

Asad F, Begum HA, Hamayun M, Hameed R, Yaseen T, Khan A (2018) Efficacy of different solvent extracts from selected medicinal plants for the potential of antibacterial activity. Pure Appl Biol 7(2):890–896. https://doi.org/10.19045/bspab.2018.700108

Article  CAS  Google Scholar 

Petrini O, Fisher PJ (1986) Fungal endophytes in Salicornia perennis. Trans Br Mycol Soc 87(4):647–651. https://doi.org/10.1016/S0007-1536(86)80109-7

Article  Google Scholar 

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, New York

Google Scholar 

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

CAS  Google Scholar 

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Article  CAS  PubMed  Google Scholar 

Kaur J, Bhambri P, Gupta OP (2013) Distance based phylogenetic trees with bootstrapping. Int J Comput Appl 47:6–10

Google Scholar 

Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Article  PubMed  Google Scholar 

Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR (2018) Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol 9:1639. https://doi.org/10.3389/fmicb.2018.01639

Article  PubMed  PubMed Central  Google Scholar 

Shen Q, Zhang B, Xu R, Wang Y, Ding X, Li P (2010) Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifdobacterium animalis 01. Anaerobe 16:380–386. https://doi.org/10.1016/j.anaerobe.2010.06.006

Article  CAS  PubMed  Google Scholar 

Houssen WE, Lu Z, Edrada-Ebel R, Chatzi C, Tucker SJ, Sepčić K et al (2010) Chemical synthesis and biological activities of 3-alkyl pyridinium polymeric analogues of marine toxins. J Chem Biol 3(3):113–125. https://doi.org/10.1007/s12154-010-0036-4

Article  PubMed  PubMed Central  Google Scholar 

Hollow SE, Johnstone TC (2022) Realgar and arsenene nanomaterials as arsenic-based anticancer agents. Curr Opin Chem Biol 72:102229. https://doi.org/10.1016/j.cbpa.2022.102229

Article  CAS  PubMed  Google Scholar 

Keri RS, Chand K, Budagumpi S, Balappa Somappa S, Patil SA, Nagaraja BM (2017) An overview of benzo [b] thiophene-based medicinal chemistry. Eur J Med Chem 138:1002–1033. https://doi.org/10.1016/j.ejmech.2017.07.038

Article  CAS  PubMed  Google Scholar 

Adelakun OE, Kudanga T, Green IR, le Roes-Hill M, Burton SG (2012) Enzymatic modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochem 47(12):1926–1932. https://doi.org/10.1016/j.procbio.2012.06.027

Article  CAS  Google Scholar 

Huang L, Zhu X, Zhou S, Cheng Z, Shi K, Zhang C, Shao H (2021) Phthalic acid esters: natural sources and biological activities. Toxins 13:495. https://doi.org/10.3390/toxins13070495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matin MM, Matin P, Rahman MR, Ben Hadda T, Almalki FA, Mahmud S, Ghoneim MM, Alruwaily M, Alshehri S (2022) Triazoles and their derivatives: chemistry, synthesis, and therapeutic applications. Front Mol Biosci 9:864286. https://doi.org/10.3389/fmolb.2022.864286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aggarwal R, Sumran G (2020) An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2020.112652

Article  PubMed  PubMed Central  Google Scholar 

Muzahid AA, Sharmin S, Hossain MS, Ahamed KU, Ahmed N, Yeasmin MS, Ahmed NU, Saha BK, Masud Rana GM, Maitra B, Bhuiyan MNH (2023) Analysis of bioactive compounds present in different crude extracts of Benincasa hispida and Cucurbita moschata seeds by gas chromatography-mass spectrometry. Heliyon 9:12702. https://doi.org/10.1016/j.heliyon.2022.e12702

Article  CAS  Google Scholar 

Abramczyk B, Marzec-Grządziel A, Grządziel J, Król E, Gałązka A, Oleszek W (2022) Biocontrol potential and catabolic profile of endophytic Diaporthe eres strain 1420S from Prunus domestica L. in Poland—a preliminary study. Agronomy 12:165. https://doi.org/10.3390/agronomy12010165

Article  CAS  Google Scholar 

Nagarajan K, Tong W, Leong C, Tan W (2021) Potential of endophytic Diaporthe sp. as a new source of bioactive compounds. J Microbiol Biotechnol 31:493–500. https://doi.org/10.4014/jmb.2005.05012

Article  CAS  PubMed  Google Scholar 

Gomes RR, Glienke C, Videira SI, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–41. https://doi.org/10.3767/003158513X666844

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148. https://doi.org/10.1016/j.fbr.2018.10.001

Article  Google Scholar 

Rossman AY, Farr DF, Castlebury LA (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48:135–144.

留言 (0)

沒有登入
gif