Effects of natalizumab on oligoclonal bands in the cerebrospinal fluid of patients with multiple sclerosis: a systematic review and meta-analysis

Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–17. https://doi.org/10.1016/S0140-6736(08)61620-7

Article  CAS  PubMed  Google Scholar 

Kieseier BC, Storch MK, Archelos JJ et al (1999) Effector pathways in immune mediated central nervous system demyelination. Curr Opin Neurol 12(3):323–36. https://doi.org/10.1097/00019052-199906000-00011

Article  CAS  PubMed  Google Scholar 

Martin R, McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32(2):121–82. https://doi.org/10.3109/10408369509084683

Article  CAS  PubMed  Google Scholar 

Popescu BF, Pirko I, Lucchinetti CF (2013) Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn) 19(4 Multiple Sclerosis):901–21. https://doi.org/10.1212/01.CON.0000433291.23091.65

Article  PubMed  Google Scholar 

Bonnan M (2015) Intrathecal IgG synthesis: a resistant and valuable target for future multiple sclerosis treatments. Mult Scler Int 2015:296184. https://doi.org/10.1155/2015/296184

Article  PubMed  PubMed Central  Google Scholar 

Stangel M, Fredrikson S, Meinl E et al (2013) The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol 9(5):267–76. https://doi.org/10.1038/nrneurol.2013.41

Article  CAS  PubMed  Google Scholar 

Tumani H, Deisenhammer F, Giovannoni G et al (2011) Revised McDonald criteria: the persisting importance of cerebrospinal fluid analysis. Ann Neurol 70(3):520. https://doi.org/10.1002/ana.22508.author reply 521

Correale J, de los Milagros Bassani Molinas M (2002) Oligoclonal bands and antibody responses in multiple sclerosis. J Neurol 249(4):375-89. https://doi.org/10.1007/s004150200026

Bowen JD, Kraft GH, Wundes A et al (2012) Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 47(7):946–51. https://doi.org/10.1038/bmt.2011.208

Article  CAS  PubMed  Google Scholar 

Graner M, Pointon T, Manton S et al (2020) Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides. PLoS One 15(2):e0228883. https://doi.org/10.1371/journal.pone.0228883

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caroscio JT, Kochwa S, Sacks H et al (1986) Quantitative cerebrospinal fluid IgG measurements as a marker of disease activity in multiple sclerosis. Arch Neurol 43(11):1129–31. https://doi.org/10.1001/archneur.1986.00520110029009

Article  CAS  PubMed  Google Scholar 

Avasarala JR, Cross AH, Trotter JL (2001) Oligoclonal band number as a marker for prognosis in multiple sclerosis. Arch Neurol 58(12):2044–5. https://doi.org/10.1001/archneur.58.12.2044

Article  CAS  PubMed  Google Scholar 

Joseph FG, Hirst CL, Pickersgill TP et al (2009) CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry 80(3):292–6. https://doi.org/10.1136/jnnp.2008.150896

Article  CAS  PubMed  Google Scholar 

Tintoré M, Rovira A, Río J et al (2008) Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70(13 Pt 2):1079–83. https://doi.org/10.1212/01.wnl.0000280576.73609.c6

Article  PubMed  Google Scholar 

Villar LM, García-Barragán N, Sádaba MC et al (2008) Accuracy of CSF and MRI criteria for dissemination in space in the diagnosis of multiple sclerosis. J Neurol Sci 266(1–2):34–7. https://doi.org/10.1016/j.jns.2007.08.030

Article  PubMed  Google Scholar 

Ferreira D, Voevodskaya O, Imrell K et al (2014) Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy. J Neuroimmunol 274(1–2):149–54. https://doi.org/10.1016/j.jneuroim.2014.06.010

Article  CAS  PubMed  Google Scholar 

Calabrese M, Poretto V, Favaretto A et al (2012) Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135(10):2952–61. https://doi.org/10.1093/brain/aws246

Article  PubMed  Google Scholar 

European Medicines Agency (2012) Tysabri (natalizumab): summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000603/WC500044686.pdf. Accessed 12 Jul 2013

McCormack PL (2013) Natalizumab: a review of its use in the management of relapsing-remitting multiple sclerosis. Drugs 73(13):1463–81. https://doi.org/10.1007/s40265-013-0102-7

Article  CAS  PubMed  Google Scholar 

Niino M, Bodner C, Simard ML et al (2006) Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol 59(5):748–54. https://doi.org/10.1002/ana.20859. Erratum in: Ann Neurol 2006;59(6):990

Guger M, Enzinger C, Leutmezer F et al (2021) Long-term outcome and predictors of long-term disease activity in natalizumab-treated patients with multiple sclerosis: real life data from the Austrian MS treatment registry. J Neurol 268:4303–4310. https://doi.org/10.1007/s00415-021-10559-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boziki M, Bakirtzis C, Giantzi V et al (2021) Long-term efficacy outcomes of natalizumab vs. fingolimod in patients with highly active relapsing-remitting multiple sclerosis: real-world data from a multiple sclerosis reference center. Front Neurol 12:699844. https://doi.org/10.3389/fneur.2021.699844

Article  PubMed  PubMed Central  Google Scholar 

Butzkueven H, Kappos L, Wiendl H et al (2020) Long-term safety and effectiveness of natalizumab treatment in clinical practice: 10 years of real-world data from the Tysabri Observational Program (TOP). J Neurol Neurosurg Psychiatry 91:660–668. https://doi.org/10.1136/jnnp-2019-322326

Article  PubMed  Google Scholar 

Prosperini L, Saccà F, Cordioli C et al (2017) Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naïve patients with multiple sclerosis. J Neurol 264:284–294. https://doi.org/10.1007/s00415-016-8343-5

Article  CAS  PubMed  Google Scholar 

Giovannoni G, Popescu V, Wuerfel J et al (2022) Smouldering multiple sclerosis: the “real MS.” Ther Adv Neurol Disord 15:17562864211066752. https://doi.org/10.1177/17562864211066751

Article  PubMed  PubMed Central  Google Scholar 

Jarius S, Paul F, Franciotta D et al (2011) Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 306(1–2):82–90. https://doi.org/10.1016/j.jns.2011.03.038

Article  CAS  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

Article  PubMed  PubMed Central  Google Scholar 

Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. https://doi.org/10.1002/ana.22366

Article  PubMed  PubMed Central  Google Scholar 

Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

Article  PubMed  Google Scholar 

Clark J, Glasziou P, Del Mar C et al (2020) A full systematic review was completed in 2 weeks using automation tools: a case study. J Clin Epidemiol 121:81–90. https://doi.org/10.1016/j.jclinepi.2020.01.008

Article  PubMed  Google Scholar 

Haddaway NR, Page MJ, Pritchard CC et al (2022) PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev 18(2):e1230. https://doi.org/10.1002/cl2.1230

Article  PubMed  PubMed Central  Google Scholar 

Wells GA, Shea B, O’Connell D et al (2008) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Retrieved June 15, 2024 Availa

留言 (0)

沒有登入
gif