Supraphysiological androgen (SPA) treatment can paradoxically restrict growth of castration-resistant prostate cancer with high androgen receptor (AR) activity, which is the basis for use of Bipolar Androgen Therapy (BAT) for patients with this disease. While androgens are widely appreciated to enhance anabolic metabolism, how SPA-mediated metabolic changes alter prostate cancer progression and therapy response is unknown. Here, we report that SPA markedly increased intracellular and secreted polyamines in prostate cancer models. This occurred through AR binding at enhancer sites upstream of the ODC1 promoter to increase abundance of ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine synthesis, and de novo synthesis of polyamines from arginine. SPA-stimulated polyamines enhance prostate cancer fitness, as dCas9-KRAB-mediated inhibition of AR regulation of ODC1 or direct ODC inhibition by difluoromethylornithine (DFMO) increased efficacy of SPA. Mechanistically, this occurred in part due to increased activity of S-adenosylmethionine decarboxylase 1 (AMD1), which was stimulated both by AR and by loss of negative feedback by polyamines, leading to depletion of its substrate S-adenosylmethionine and global protein methylation. These data provided the rationale for a clinical trial testing the safety and efficacy of BAT in combination with DFMO for patients with metastatic castration-resistant prostate cancer. Pharmacodynamic studies of this drug combination in the first five patients on trial indicated the drug combination resulted in effective polyamine depletion in plasma. Thus, the AR potently stimulates polyamine synthesis, which constitutes a vulnerability in prostate cancer treated with SPA that can be targeted therapeutically.
Competing Interest StatementTMS, RAC, and LAS receive funding to their institution from Panbela Therapeutics. A patent related to the findings in this study has been filed from the Johns Hopkins University (Application 63/501,323) with RAC, SRD, and LAS as co-inventors. Other authors declare no conflicts of interest related to this work.
Clinical TrialNCT06059118
Funding StatementThis study was funded by the National Institutes of Health grant K08CA273167 (LAS), the Department of Defense grant HT94252310107 (LAS), the Prostate Cancer Foundation Young Investigator Awards (RK, DES, and LAS), the Phi Beta Psi Charity grant IPN22120375 (LAS), the Samuel Waxman Cancer Research Foundation (TMS and RAC), and Panbela Therapeutics (LAS).
Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The IRB of Johns Hopkins University gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data AvailabilityAll data produced in the present study are available upon reasonable request to the authors.
留言 (0)