Braun HG, Perera SR, Tremblay YDN, Thomassin JL (2024). Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective. Can J Microbiol. https://doi.org/10.1139/cjm-2024-0032
Hu F, Zhu D, Wang F, Jiang X, Sun Z, Chen Z et al (2014) CHINET 2013 surveillance of bacterial resistance in China. Chin J Infect Chemother 14:365–374
Karampatakis T, Tsergouli K, Behzadi P (2023) Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiot (Basel) 12(2):234. https://doi.org/10.3390/antibiotics12020234
Izghirean N, Waidacher C, Kittinger C, Chyba M, Koraimann G, Pertschy B, Zarfel G (2021) Effects of ribosomal protein S10 flexible loop mutations on tetracycline and tigecycline susceptibility of Escherichia coli. Front Microbiol 12:663835. https://doi.org/10.3389/fmicb.2021.663835
Article PubMed PubMed Central Google Scholar
He F, Fu Y, Chen Q, Ruan Z, Hua X, Zhou H, Yu Y (2015) Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS ONE 10(3):e0119064. https://doi.org/10.1371/journal.pone.0119064
Article CAS PubMed PubMed Central Google Scholar
Juan CH, Huang YW, Lin YT, Yang TC, Wang FD (2016) Risk factors, outcomes, and mechanisms of tigecycline-nonsusceptible Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother 60(12):7357–7363. https://doi.org/10.1128/AAC.01503-16
Article CAS PubMed PubMed Central Google Scholar
Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A (2014) Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 58(3):1707–1712. https://doi.org/10.1128/AAC.01803-13
Article CAS PubMed PubMed Central Google Scholar
Xu H, Zhou Y, Zhai X, Du Z, Wu H, Han Y, Huo C, Chen Y (2016) Emergence and characterization of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae isolates from blood samples of patients in intensive care units in northern China. J Med Microbiol 65(8):751–759. https://doi.org/10.1099/jmm.0.000299
Article CAS PubMed Google Scholar
Zhong X, Xu H, Chen D, Zhou H, Hu X, Cheng G (2014) First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS ONE 9(12):e115185. https://doi.org/10.1371/journal.pone.0115185
Article CAS PubMed PubMed Central Google Scholar
Rueda Furlan JP, Fuentes-Castillo D, Guedes Stehling E, Lincopan N, Sellera FP (2023) The emergence of tet(X) variants highlight challenges for the global genomic surveillance of tigecycline resistance. Lancet Microbe 4(11):e857. https://doi.org/10.1016/S2666-5247(23)00249-5
He R, Yang Y, Wu Y, Zhong LL, Yang Y, Chen G, Qin M, Liang X, Ahmed MAEE, Lin M, Yan B, Xia Y, Dai M, Chen H, Tian GB (2021) Characterization of a plasmid-encoded resistance-nodulation-division efflux pump in Klebsiella pneumoniae and Klebsiella quasipneumoniae from patients in China. Antimicrob Agents Chemother 65(2):e02075-e2120. https://doi.org/10.1128/AAC.02075-20
Article CAS PubMed PubMed Central Google Scholar
Li Y, Wang T, Li Y, Xu C, Wang T, Huang L, Zeng X, Zhang G, Li C, Dong N (2024) Fitness cost of tet(A) type I variant-mediated tigecycline resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 38:158–162. https://doi.org/10.1016/j.jgar.2024.06.003
Article CAS PubMed Google Scholar
Liang Y, Yin X, Zeng L, Chen S (2017) Clonal replacement of epidemic KPC-producing Klebsiella pneumoniae in a hospital in China. BMC Infect Dis 17(1):363. https://doi.org/10.1186/s12879-017-2467-9
Article CAS PubMed PubMed Central Google Scholar
Fang W, Xu J, Wei Z, Wu J, Wu W, Wang Y, Chen S (2024) Enhancing bactericidal activities of ciprofloxacin by targeting the trans-translation system that is involved in stress responses in Klebsiella pneumoniae. Arch Microbiol 206(4):154. https://doi.org/10.1007/s00203-024-03872-1
Article CAS PubMed Google Scholar
Pérez-Boto D, Acebo P, García-Peña FJ, Abad JC, Echeita MA, Amblar M (2015) Isolation of a point mutation associated with altered expression of the CmeABC efflux pump in a multidrug-resistant Campylobacter jejuni population of poultry origin. J Glob Antimicrob Resist 3(2):115–122. https://doi.org/10.1016/j.jgar.2015.03.010
Article CAS PubMed Google Scholar
Rodrigues L, Aínsa JA, Viveiros M (2021) Measuring efflux and permeability in mycobacteria. Methods Mol Biol 2314:231–245. https://doi.org/10.1007/978-1-0716-1460-0_9
Article CAS PubMed Google Scholar
Xie M, Ye L, Chen K, Xu Q, Yang C, Chen X, Chan EW, Li F, Chen S (2024) Clinical use of tigecycline may contribute to the widespread dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae strains. Emerg Microbes Infect 13(1):2306957. https://doi.org/10.1080/22221751.2024.2306957
Article CAS PubMed PubMed Central Google Scholar
Fang L, Chen Q, Shi K, Li X, Shi Q, He F, Zhou J, Yu Y, Hua X (2016) Step-wise increase in tigecycline resistance in Klebsiella pneumoniae associated with mutations in ramR, lon, and rpsJ. PLoS ONE 11(10):e0165019. https://doi.org/10.1371/journal.pone.0165019
Article CAS PubMed PubMed Central Google Scholar
Vogwill T, MacLean RC (2015) The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 8(3):284–295. https://doi.org/10.1111/eva.12202
Roemhild R, Linkevicius M, Andersson DI (2020) Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol 18(1):e3000612. https://doi.org/10.1371/journal.pbio.3000612
Article CAS PubMed PubMed Central Google Scholar
Herencias C, Álvaro-Llorente L, Ramiro-Martínez P, Fernández-Calvet A, Muñoz-Cazalla A, DelaFuente J, Graf FE, Jaraba-Soto L, Castillo-Polo JA, Cantón R, San Millán Á, Rodríguez-Beltrán J (2024) β-lactamase expression induces collateral sensitivity in Escherichia coli. Nat Commun 15(1):4731. https://doi.org/10.1038/s41467-024-49122-2
Article CAS PubMed PubMed Central Google Scholar
Herencias C, Rodríguez-Beltrán J, León-Sampedro R, Alonso-Del Valle A, Palkovičová J, Cantón R, San Millán Á (2021) Collateral sensitivity associated with antibiotic resistance plasmids. Elife 10:e65130. https://doi.org/10.7554/eLife.65130
Article CAS PubMed PubMed Central Google Scholar
Chen HL, Jiang Y, Li MM, Sun Y, Cao JM, Zhou C, Zhang XX, Qu Y, Zhou TL (2021) Acquisition of tigecycline resistance by carbapenem-resistant Klebsiella pneumoniae confers collateral hypersensitivity to aminoglycosides. Front Microbiol 12:674502. https://doi.org/10.3389/fmicb.2021.674502
Article PubMed PubMed Central Google Scholar
Mmatli M, Mbelle NM, Maningi NE, Osei Sekyere J (2020) Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: a systematic review of current reports. mSystems 5(6):e00783–20. https://doi.org/10.1128/mSystems.00783-20
Wang X, Chen H, Zhang Y, Wang Q, Zhao C, Li H, He W, Zhang F, Wang Z, Li S, Wang H (2015) Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: Role of the global regulator RamA and its local repressor RamR. Int J Antimicrob Agents 45(6):635–640. https://doi.org/10.1016/j.ijantimicag.2014.12.022
Article CAS PubMed Google Scholar
Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z (2019) Hao H (2019) The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control 8:44. https://doi.org/10.1186/s13756-019-0489-3
Article PubMed PubMed Central Google Scholar
Xu Q, Sheng Z, Hao M, Jiang J, Ye M, Chen Y, Xu X, Guo Q (2021) Wang M (2021) RamA upregulates multidrug resistance efflux pumps AcrAB and OqxAB in Klebsiella pneumoniae. Int J Antimicrob Agents 57(2):106251. https://doi.org/10.1016/j.ijantimicag.2020.106251
留言 (0)