Kelso, J. A. S. Dynamic Patterns: The Self-Organization of Brain and Behavior 334 (MIT Press, 1995). This is an excellent book that promotes viewing the brain as a complex system and understanding behaviour as a result of cooperation between neuronal ensembles.
Kelso, J. A. S. & Tognoli, E. in Neurodynamics of Cognition and Consciousness (eds Perlovsky, L. I. & Kozma, R.) 39–59 (Springer, 2007).
Kelso, J. A. S. in Evolution of Dynamical Structures in Complex Systems (eds Friedrich, R. & Wunderlin, A.) 223–234 (Springer, 1992).
Kelso, J. A. S. An essay on understanding the mind. Ecol. Psychol. 20, 180–208 (2008).
Article PubMed PubMed Central Google Scholar
Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).
Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).
Article CAS PubMed Google Scholar
Friston, K. J. Transients, metastability, and neuronal dynamics. NeuroImage 5, 164–171 (1997). This paper highlights and attempts to reconcile metastability in coordination dynamics and chaotic itinerancy.
Article CAS PubMed Google Scholar
Fuchs, A., Kelso, J. A. S. & Haken, H. Phase transitions in the human brain: spatial mode dynamics. Int. J. Bifurc. Chaos 02, 917–939 (1992).
Rabinovich, M., Huerta, R., Varona, P. & Afraimovich, V. S. Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008). This paper introduces stable heteroclinic channels as a mathematical object to explain metastability.
Article PubMed PubMed Central Google Scholar
Tsuda, I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–810 (2001).
Article CAS PubMed Google Scholar
La Camera, G., Fontanini, A. & Mazzucato, L. Cortical computations via metastable activity. Curr. Opin. Neurobiol. 58, 37–45 (2019).
Article PubMed PubMed Central Google Scholar
Brinkman, B. A. W. et al. Metastable dynamics of neural circuits and networks. Appl. Phys. Rev. 9, 011313 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rossi, K. L. et al. Dynamical properties and mechanisms of metastability: a perspective in neuroscience. Preprint at https://doi.org/10.48550/arXiv.2305.05328 (2024).
Attneave, F. Multistability in perception. Sci. Am. 225, 62–71 (1971).
Feudel, U. & Grebogi, C. Multistability and the control of complexity. Chaos 7, 597–604 (1997).
Article CAS PubMed Google Scholar
Kraut, S., Feudel, U. & Grebogi, C. Preference of attractors in noisy multistable systems. Phys. Rev. E 59, 5253–5260 (1999).
Pisarchik, A. N. & Feudel, U. Control of multistability. Phys. Rep. 540, 167–218 (2014).
Ashwin, P. & Postlethwaite, C. On designing heteroclinic networks from graphs. Phys. D Nonlinear Phenom. 265, 26–39 (2013).
Tsuda, I. Chaotic itinerancy and its roles in cognitive neurodynamics. Curr. Opin. Neurobiol. 31, 67–71 (2015).
Article CAS PubMed Google Scholar
Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).
Miets, H. A. & Chevalier, J. On the crystallization of sodium nitrate. Mineral. Mag. 14, 123–133 (1906).
Haken, H., Kelso, J. A. S. & Bunz, H. A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985).
Article CAS PubMed Google Scholar
Kelso, J. A. S. Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. 246, R1000–R1004 (1984).
Schöner, G. & Kelso, J. A. S. Dynamic pattern generation in behavioral and neural systems. Science 239, 1513–1520 (1988).
Ashwin, P., Buescu, J. & Stewart, I. Bubbling of attractors and synchronisation of chaotic oscillators. Phys. Lett. A 193, 126–139 (1994).
Aizenman, M. & Lebowitz, J. L. Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988).
Afraimovich, V., Verichev, N. N. & Rabinovich, M. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 29, 795–803 (1986).
Kaneko, K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Phys. D Nonlinear Phenom. 41, 137–172 (1990).
Shlosman, S. in Encyclopedia of Mathematical Physics (eds Françoise, J.-P., Naber, G. L. & Tsun, T. S.) 417–420 (Academic, 2006).
Kryukov, V. The metastable and unstable states in the brain. Neural Netw. 1, 264 (1988).
Niebur, E., Schuster, H. G. & Kammen, D. M. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67, 2753–2756 (1991).
Article CAS PubMed Google Scholar
Niebur, E., Schuster, H. G. & Kammen, D. M. in Neural Network Dynamics (eds Taylor, J. G. et al.) 226–233 (Springer, 1992).
Holst, E. R. M. von. The Behavioural Physiology of Animals and Man: The Collected Papers of Erich von Holst (Univ. of Miami Press, 1973).
Kelso, J. A. S., Del Colle, J. D. & Schöner, G. in Attention and Performance 13: Motor Representation and Control 139–169 (Erlbaum, 1990). This paper highlights how metastability arises from broken symmetry.
DeGuzman & Kelso, J. A. S. in Principles Of Organization In Organisms (ed. Mittenthal, J. E.) (Addison-Wesley, 1992).
Schöner, G., Haken, H. & Kelso, J. A. S. A stochastic theory of phase transitions in human hand movement. Biol. Cybern. 53, 247–257 (1986).
Fingelkurts, A. & Fingelkurts, A. A. Making complexity simpler: multivariability and metastability in the brain. Int. J. Neurosci. 114, 843–862 (2004).
Rabinovich, M. et al. Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87, 068102 (2001).
Article CAS PubMed Google Scholar
Kaneko, K. On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection. Phys. D Nonlinear Phenom. 124, 322–344 (1998).
Kaneko, K. & Tsuda, I. Chaotic itinerancy. Chaos 13, 926–936 (2003). This paper provides a summary of chaotic itinerancy and its applications at the start of this century, wherein switching occurs between fully developed chaos and ordered behaviour characterized by low-dimensional dynamics.
Breakspear, M. Perception of odors by a nonlinear model of the olfactory bulb. Int. J. Neural Syst. 11, 101–124 (2001).
Article CAS PubMed Google Scholar
Breakspear, M., Terry, J. R. & Friston, K. J. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Netw. Comput. Neural Syst. 14, 703–732 (2003). This paper provides a thorough theoretical explanation and computational demonstration of metastability and chaotic itinerancy in chaotic systems.
Afraimovich, V., Rabinovich, M. & Varona, P. Heteroclinic contours in neural ensembles and the winnerless competition principle. Int. J. Bifurc. Chaos https://doi.org/10.1142/S0218127404009806 (2003).
Kozma, R. & Puljic, M. Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr. Opin. Neurobiol. 31, 181–188 (2015).
Article CAS PubMed Google Scholar
Kozma, R. & Puljic, M. Hierarchical random cellular neural networks for system-level brain-like signal processing. Neural Netw. 45, 101–110 (2013).
Kozma, R., Puljic, M., Balister, P., Bollobás, B. & Freeman, W. J. Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern. 92, 367–379 (2005).
留言 (0)