Metastability demystified — the foundational past, the pragmatic present and the promising future

Kelso, J. A. S. Dynamic Patterns: The Self-Organization of Brain and Behavior 334 (MIT Press, 1995). This is an excellent book that promotes viewing the brain as a complex system and understanding behaviour as a result of cooperation between neuronal ensembles.

Kelso, J. A. S. & Tognoli, E. in Neurodynamics of Cognition and Consciousness (eds Perlovsky, L. I. & Kozma, R.) 39–59 (Springer, 2007).

Kelso, J. A. S. in Evolution of Dynamical Structures in Complex Systems (eds Friedrich, R. & Wunderlin, A.) 223–234 (Springer, 1992).

Kelso, J. A. S. An essay on understanding the mind. Ecol. Psychol. 20, 180–208 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).

Article  PubMed  Google Scholar 

Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

Article  CAS  PubMed  Google Scholar 

Friston, K. J. Transients, metastability, and neuronal dynamics. NeuroImage 5, 164–171 (1997). This paper highlights and attempts to reconcile metastability in coordination dynamics and chaotic itinerancy.

Article  CAS  PubMed  Google Scholar 

Fuchs, A., Kelso, J. A. S. & Haken, H. Phase transitions in the human brain: spatial mode dynamics. Int. J. Bifurc. Chaos 02, 917–939 (1992).

Article  Google Scholar 

Rabinovich, M., Huerta, R., Varona, P. & Afraimovich, V. S. Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008). This paper introduces stable heteroclinic channels as a mathematical object to explain metastability.

Article  PubMed  PubMed Central  Google Scholar 

Tsuda, I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–810 (2001).

Article  CAS  PubMed  Google Scholar 

La Camera, G., Fontanini, A. & Mazzucato, L. Cortical computations via metastable activity. Curr. Opin. Neurobiol. 58, 37–45 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Brinkman, B. A. W. et al. Metastable dynamics of neural circuits and networks. Appl. Phys. Rev. 9, 011313 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi, K. L. et al. Dynamical properties and mechanisms of metastability: a perspective in neuroscience. Preprint at https://doi.org/10.48550/arXiv.2305.05328 (2024).

Attneave, F. Multistability in perception. Sci. Am. 225, 62–71 (1971).

Article  Google Scholar 

Feudel, U. & Grebogi, C. Multistability and the control of complexity. Chaos 7, 597–604 (1997).

Article  CAS  PubMed  Google Scholar 

Kraut, S., Feudel, U. & Grebogi, C. Preference of attractors in noisy multistable systems. Phys. Rev. E 59, 5253–5260 (1999).

Article  CAS  Google Scholar 

Pisarchik, A. N. & Feudel, U. Control of multistability. Phys. Rep. 540, 167–218 (2014).

Article  CAS  Google Scholar 

Ashwin, P. & Postlethwaite, C. On designing heteroclinic networks from graphs. Phys. D Nonlinear Phenom. 265, 26–39 (2013).

Article  Google Scholar 

Tsuda, I. Chaotic itinerancy and its roles in cognitive neurodynamics. Curr. Opin. Neurobiol. 31, 67–71 (2015).

Article  CAS  PubMed  Google Scholar 

Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).

Article  CAS  Google Scholar 

Miets, H. A. & Chevalier, J. On the crystallization of sodium nitrate. Mineral. Mag. 14, 123–133 (1906).

Google Scholar 

Haken, H., Kelso, J. A. S. & Bunz, H. A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985).

Article  CAS  PubMed  Google Scholar 

Kelso, J. A. S. Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. 246, R1000–R1004 (1984).

CAS  PubMed  Google Scholar 

Schöner, G. & Kelso, J. A. S. Dynamic pattern generation in behavioral and neural systems. Science 239, 1513–1520 (1988).

Article  PubMed  Google Scholar 

Ashwin, P., Buescu, J. & Stewart, I. Bubbling of attractors and synchronisation of chaotic oscillators. Phys. Lett. A 193, 126–139 (1994).

Article  Google Scholar 

Aizenman, M. & Lebowitz, J. L. Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988).

Article  Google Scholar 

Afraimovich, V., Verichev, N. N. & Rabinovich, M. Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 29, 795–803 (1986).

Article  Google Scholar 

Kaneko, K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Phys. D Nonlinear Phenom. 41, 137–172 (1990).

Article  Google Scholar 

Shlosman, S. in Encyclopedia of Mathematical Physics (eds Françoise, J.-P., Naber, G. L. & Tsun, T. S.) 417–420 (Academic, 2006).

Kryukov, V. The metastable and unstable states in the brain. Neural Netw. 1, 264 (1988).

Article  Google Scholar 

Niebur, E., Schuster, H. G. & Kammen, D. M. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67, 2753–2756 (1991).

Article  CAS  PubMed  Google Scholar 

Niebur, E., Schuster, H. G. & Kammen, D. M. in Neural Network Dynamics (eds Taylor, J. G. et al.) 226–233 (Springer, 1992).

Holst, E. R. M. von. The Behavioural Physiology of Animals and Man: The Collected Papers of Erich von Holst (Univ. of Miami Press, 1973).

Kelso, J. A. S., Del Colle, J. D. & Schöner, G. in Attention and Performance 13: Motor Representation and Control 139–169 (Erlbaum, 1990). This paper highlights how metastability arises from broken symmetry.

DeGuzman & Kelso, J. A. S. in Principles Of Organization In Organisms (ed. Mittenthal, J. E.) (Addison-Wesley, 1992).

Schöner, G., Haken, H. & Kelso, J. A. S. A stochastic theory of phase transitions in human hand movement. Biol. Cybern. 53, 247–257 (1986).

Article  PubMed  Google Scholar 

Fingelkurts, A. & Fingelkurts, A. A. Making complexity simpler: multivariability and metastability in the brain. Int. J. Neurosci. 114, 843–862 (2004).

Article  PubMed  Google Scholar 

Rabinovich, M. et al. Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87, 068102 (2001).

Article  CAS  PubMed  Google Scholar 

Kaneko, K. On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection. Phys. D Nonlinear Phenom. 124, 322–344 (1998).

Article  Google Scholar 

Kaneko, K. & Tsuda, I. Chaotic itinerancy. Chaos 13, 926–936 (2003). This paper provides a summary of chaotic itinerancy and its applications at the start of this century, wherein switching occurs between fully developed chaos and ordered behaviour characterized by low-dimensional dynamics.

Article  PubMed  Google Scholar 

Breakspear, M. Perception of odors by a nonlinear model of the olfactory bulb. Int. J. Neural Syst. 11, 101–124 (2001).

Article  CAS  PubMed  Google Scholar 

Breakspear, M., Terry, J. R. & Friston, K. J. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Netw. Comput. Neural Syst. 14, 703–732 (2003). This paper provides a thorough theoretical explanation and computational demonstration of metastability and chaotic itinerancy in chaotic systems.

Article  Google Scholar 

Afraimovich, V., Rabinovich, M. & Varona, P. Heteroclinic contours in neural ensembles and the winnerless competition principle. Int. J. Bifurc. Chaos https://doi.org/10.1142/S0218127404009806 (2003).

Kozma, R. & Puljic, M. Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr. Opin. Neurobiol. 31, 181–188 (2015).

Article  CAS  PubMed  Google Scholar 

Kozma, R. & Puljic, M. Hierarchical random cellular neural networks for system-level brain-like signal processing. Neural Netw. 45, 101–110 (2013).

Article  PubMed  Google Scholar 

Kozma, R., Puljic, M., Balister, P., Bollobás, B. & Freeman, W. J. Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern. 92, 367–379 (2005).

Article 

留言 (0)

沒有登入
gif