Deep Convolutional Generative Adversarial Network for Improved Cardiac Image Classification in Heart Disease Diagnosis

McGranaghan P, Saxena A, Düngen HD, Rubens M, Appunni S, Salami J, Veledar E, Lacour P, Blaschke F, Obradovic D, Loncar G: Performance of A Metabolomic Biomarker Score Compared to Three Prognostic Scores in Chronic Heart Failure. 2021

Shiraishi Y, Goto S, Niimi N, Katsumata Y, Goda A, Takei M, Saji M, Sano M, Fukuda K, Kohno T, Yoshikawa T: Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography. Europace 25(3):922-930, 2023

Article  PubMed  PubMed Central  Google Scholar 

Codina PAU, Zamora E, Levy WC, Cediel G, Santiago-Vacas E, Domingo M, Ruiz-Cueto M, Casquete D, Sarrias A, Borrellas A, Santesmases J: Sudden Cardiac Death in Heart Failure: A 20-Year Perspective From a Mediterranean Cohort. Journal of Cardiac Failure 29(3):236-245, 2023

Article  PubMed  Google Scholar 

Sarijaloo F, Park J, Zhong X, Wokhlu A: Predicting 90 day acute heart failure readmission and death using machine learning‐supported decision analysis. Clinical cardiology 44(2):230-237, 2021

Article  PubMed  Google Scholar 

Benedetto U, Dimagli A, Sinha S, Cocomello L, Gibbison B, Caputo M, Gaunt T, Lyon M, Holmes C, Angelini GD: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis. The Journal of thoracic and cardiovascular surgery 163(6):2075-2087, 2022

Article  PubMed  Google Scholar 

Shah A, Ahirrao S, Pandya S, Kotecha K, Rathod S: Smart cardiac framework for an early detection of cardiac arrest condition and risk. Frontiers in Public Health 9:762303, 2021

Article  PubMed  PubMed Central  Google Scholar 

Noor A, Ali L, Rauf HT, Tariq U, Aslam S: An integrated decision support system for heart failure prediction based on feature transformation using grid of stacked autoencoders. Measurement 205:112166, 2022

Article  Google Scholar 

Wang J, Rao C, Goh M, Xiao X: Risk assessment of coronary heart disease based on cloud-random forest. Artificial Intelligence Review 56(1):203-232, 2023

Article  Google Scholar 

Quan R, Huang S, Pang L, Shen J, Wu W, Tang F, Zhu X, Su W, Sun J, Yu Z, Wang L: Risk prediction in pulmonary hypertension due to chronic heart failure: incremental prognostic value of pulmonary hemodynamics. BMC Cardiovascular Disorders 22(1):56, 2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Budholiya K, Shrivastava SK, Sharma V: An optimized XGBoost based diagnostic system for effective prediction of heart disease. Journal of King Saud University-Computer and Information Sciences 34(7):4514-4523, 2022

Article  Google Scholar 

Wang Z, Stavrakis S, Yao B: Hierarchical deep learning with Generative Adversarial Network for automatic cardiac diagnosis from ECG signals. Computers in Biology and Medicine 155:106641, 2023

Article  PubMed  Google Scholar 

Jurado-Camino MT, Chushig-Muzo D, Soguero-Ruiz C, de Miguel-Bohoyo P, Mora-Jiménez I: On the Use of Generative Adversarial Networks to Predict Health Status Among Chronic Patients. In HEALTHINF 167-178, 2023

Owusu E, Boakye-Sekyerehene P, Appati JK, Ludu JY: Computer‐Aided Diagnostics of Heart Disease Risk Prediction Using Boosting Support Vector Machine. Computational Intelligence and Neuroscience 2021(1):3152618, 2021

Article  PubMed  PubMed Central  Google Scholar 

Omotehinwa TO, Oyewola DO, Moung EG: Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease. Informatics and Health 1(2):70-81, 2024

Article  Google Scholar 

Khozeimeh F, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Alizadehsani R, Tartibi M, Hussain S, Sani ZA, Khodatars M, Sadeghi D: RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance. Scientific reports 12(1):11178, 2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Argilaga A: Fractal Informed Generative Adversarial Networks (FI-GAN): Application to the generation of X-ray CT images of a self-similar partially saturated sand. Computers and Geotechnics 158:105384, 2023

Article  Google Scholar 

Sekar J, Aruchamy P, Sulaima Lebbe Abdul H, Mohammed AS, Khamuruddeen S: An efficient clinical support system for heart disease prediction using TANFIS classifier. Computational Intelligence 38(2):610-640, 2022

Article  Google Scholar 

Asadi S, Roshan S, Kattan MW: Random forest swarm optimization-based for heart diseases diagnosis. Journal of biomedical informatics 115:103690, 2021

Article  PubMed  Google Scholar 

El-Shafiey MG, Hagag A, El-Dahshan ESA, Ismail MA: A hybrid GA and PSO optimized approach for heart-disease prediction based on random forest. Multimedia Tools and Applications 81(13):18155-18179, 2022

Article  Google Scholar 

Nandy S, Adhikari M, Balasubramanian V, Menon VG, Li X, Zakarya M: An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Computing and Applications 35(20):14723-14737, 2023

Article  Google Scholar 

Elsedimy EI, AboHashish SM, Algarni F: New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization. Multimedia Tools and Applications 83(8):23901-23928, 2024

Article  Google Scholar 

Balasubramaniam S, Joe CV, Manthiramoorthy C, Kumar KS: ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease. Biomedical Signal Processing and Control 87:105446, 2024

Article  Google Scholar 

Dubey AK, Sinhal AK, Sharma R: Heart disease classification through crow intelligence optimization-based deep learning approach. International Journal of Information Technology 16(3):1815-1830, 2024

Article  Google Scholar 

Devi NG, Singh NS: Enhancing heart disease detection in IoT: optimizing long short-term memory with enhanced jellyfish optimization. Multimedia Tools and Applications 1-32, 2024

Article  Google Scholar 

He L, Qiang Z, Shao X, Lin H, Wang M, Dai F: Research on high-resolution face image inpainting method based on StyleGAN. Electronics 11(10):1620, 2022

Article  Google Scholar 

Luleci F, Catbas FN, Avci O: CycleGAN for undamaged-to-damaged domain translation for structural health monitoring and damage detection. Mechanical Systems and Signal Processing 197:110370, 2023

Article  Google Scholar 

Toda R, Teramoto A, Kondo M, Imaizumi K, Saito K, Fujita H: Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation. Scientific reports 12(1):12867, 2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakli N, Ghabri H, Soufiene BO, Almalki FA, Sakli H, Ali O, Najjari M: ResNet‐50 for 12‐Lead Electrocardiogram Automated Diagnosis. Computational Intelligence and Neuroscience 2022(1):7617551, 2022

PubMed  PubMed Central  Google Scholar 

Priya KV, Peter JD: A federated approach for detecting the chest diseases using DenseNet for multi-label classification. Complex & Intelligent Systems 8(4):3121-3129, 2022

Article  Google Scholar 

Yoon T, Kang D: Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms. Scientific Reports 13(1):2937, 2023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao CF, Yao WY, Yi MJ, Wan C, Tian YL: Arrhythmia Classification Algorithm Based on a Two‐Dimensional Image and Modified EfficientNet. Computational Intelligence and Neuroscience 2022(1):8683855, 2022

PubMed  PubMed Central  Google Scholar 

Hung ALY, Zhao K, Zheng H, Yan R, Raman SS, Terzopoulos D, Sung K: Med-cDiff: Conditional medical image generation with diffusion models. Bioengineering 10(11):1258, 2023

Article  PubMed  PubMed Central  Google Scholar 

Romero HFM, Hernández-Callejo L, Rebollo MÁG, Cardeñoso-Payo V, Gómez VA, Bello HJ, Moyo RT, Aragonés JIM: Synthetic dataset of electroluminescence images of photovoltaic cells by deep convolutional generative adversarial networks. Sustainability 15(9):7175, 2023

Article  Google Scholar 

留言 (0)

沒有登入
gif