McGranaghan P, Saxena A, Düngen HD, Rubens M, Appunni S, Salami J, Veledar E, Lacour P, Blaschke F, Obradovic D, Loncar G: Performance of A Metabolomic Biomarker Score Compared to Three Prognostic Scores in Chronic Heart Failure. 2021
Shiraishi Y, Goto S, Niimi N, Katsumata Y, Goda A, Takei M, Saji M, Sano M, Fukuda K, Kohno T, Yoshikawa T: Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography. Europace 25(3):922-930, 2023
Article PubMed PubMed Central Google Scholar
Codina PAU, Zamora E, Levy WC, Cediel G, Santiago-Vacas E, Domingo M, Ruiz-Cueto M, Casquete D, Sarrias A, Borrellas A, Santesmases J: Sudden Cardiac Death in Heart Failure: A 20-Year Perspective From a Mediterranean Cohort. Journal of Cardiac Failure 29(3):236-245, 2023
Sarijaloo F, Park J, Zhong X, Wokhlu A: Predicting 90 day acute heart failure readmission and death using machine learning‐supported decision analysis. Clinical cardiology 44(2):230-237, 2021
Benedetto U, Dimagli A, Sinha S, Cocomello L, Gibbison B, Caputo M, Gaunt T, Lyon M, Holmes C, Angelini GD: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis. The Journal of thoracic and cardiovascular surgery 163(6):2075-2087, 2022
Shah A, Ahirrao S, Pandya S, Kotecha K, Rathod S: Smart cardiac framework for an early detection of cardiac arrest condition and risk. Frontiers in Public Health 9:762303, 2021
Article PubMed PubMed Central Google Scholar
Noor A, Ali L, Rauf HT, Tariq U, Aslam S: An integrated decision support system for heart failure prediction based on feature transformation using grid of stacked autoencoders. Measurement 205:112166, 2022
Wang J, Rao C, Goh M, Xiao X: Risk assessment of coronary heart disease based on cloud-random forest. Artificial Intelligence Review 56(1):203-232, 2023
Quan R, Huang S, Pang L, Shen J, Wu W, Tang F, Zhu X, Su W, Sun J, Yu Z, Wang L: Risk prediction in pulmonary hypertension due to chronic heart failure: incremental prognostic value of pulmonary hemodynamics. BMC Cardiovascular Disorders 22(1):56, 2022
Article CAS PubMed PubMed Central Google Scholar
Budholiya K, Shrivastava SK, Sharma V: An optimized XGBoost based diagnostic system for effective prediction of heart disease. Journal of King Saud University-Computer and Information Sciences 34(7):4514-4523, 2022
Wang Z, Stavrakis S, Yao B: Hierarchical deep learning with Generative Adversarial Network for automatic cardiac diagnosis from ECG signals. Computers in Biology and Medicine 155:106641, 2023
Jurado-Camino MT, Chushig-Muzo D, Soguero-Ruiz C, de Miguel-Bohoyo P, Mora-Jiménez I: On the Use of Generative Adversarial Networks to Predict Health Status Among Chronic Patients. In HEALTHINF 167-178, 2023
Owusu E, Boakye-Sekyerehene P, Appati JK, Ludu JY: Computer‐Aided Diagnostics of Heart Disease Risk Prediction Using Boosting Support Vector Machine. Computational Intelligence and Neuroscience 2021(1):3152618, 2021
Article PubMed PubMed Central Google Scholar
Omotehinwa TO, Oyewola DO, Moung EG: Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease. Informatics and Health 1(2):70-81, 2024
Khozeimeh F, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Alizadehsani R, Tartibi M, Hussain S, Sani ZA, Khodatars M, Sadeghi D: RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance. Scientific reports 12(1):11178, 2022
Article CAS PubMed PubMed Central Google Scholar
Argilaga A: Fractal Informed Generative Adversarial Networks (FI-GAN): Application to the generation of X-ray CT images of a self-similar partially saturated sand. Computers and Geotechnics 158:105384, 2023
Sekar J, Aruchamy P, Sulaima Lebbe Abdul H, Mohammed AS, Khamuruddeen S: An efficient clinical support system for heart disease prediction using TANFIS classifier. Computational Intelligence 38(2):610-640, 2022
Asadi S, Roshan S, Kattan MW: Random forest swarm optimization-based for heart diseases diagnosis. Journal of biomedical informatics 115:103690, 2021
El-Shafiey MG, Hagag A, El-Dahshan ESA, Ismail MA: A hybrid GA and PSO optimized approach for heart-disease prediction based on random forest. Multimedia Tools and Applications 81(13):18155-18179, 2022
Nandy S, Adhikari M, Balasubramanian V, Menon VG, Li X, Zakarya M: An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Computing and Applications 35(20):14723-14737, 2023
Elsedimy EI, AboHashish SM, Algarni F: New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization. Multimedia Tools and Applications 83(8):23901-23928, 2024
Balasubramaniam S, Joe CV, Manthiramoorthy C, Kumar KS: ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease. Biomedical Signal Processing and Control 87:105446, 2024
Dubey AK, Sinhal AK, Sharma R: Heart disease classification through crow intelligence optimization-based deep learning approach. International Journal of Information Technology 16(3):1815-1830, 2024
Devi NG, Singh NS: Enhancing heart disease detection in IoT: optimizing long short-term memory with enhanced jellyfish optimization. Multimedia Tools and Applications 1-32, 2024
He L, Qiang Z, Shao X, Lin H, Wang M, Dai F: Research on high-resolution face image inpainting method based on StyleGAN. Electronics 11(10):1620, 2022
Luleci F, Catbas FN, Avci O: CycleGAN for undamaged-to-damaged domain translation for structural health monitoring and damage detection. Mechanical Systems and Signal Processing 197:110370, 2023
Toda R, Teramoto A, Kondo M, Imaizumi K, Saito K, Fujita H: Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation. Scientific reports 12(1):12867, 2022
Article CAS PubMed PubMed Central Google Scholar
Sakli N, Ghabri H, Soufiene BO, Almalki FA, Sakli H, Ali O, Najjari M: ResNet‐50 for 12‐Lead Electrocardiogram Automated Diagnosis. Computational Intelligence and Neuroscience 2022(1):7617551, 2022
PubMed PubMed Central Google Scholar
Priya KV, Peter JD: A federated approach for detecting the chest diseases using DenseNet for multi-label classification. Complex & Intelligent Systems 8(4):3121-3129, 2022
Yoon T, Kang D: Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms. Scientific Reports 13(1):2937, 2023
Article CAS PubMed PubMed Central Google Scholar
Zhao CF, Yao WY, Yi MJ, Wan C, Tian YL: Arrhythmia Classification Algorithm Based on a Two‐Dimensional Image and Modified EfficientNet. Computational Intelligence and Neuroscience 2022(1):8683855, 2022
PubMed PubMed Central Google Scholar
Hung ALY, Zhao K, Zheng H, Yan R, Raman SS, Terzopoulos D, Sung K: Med-cDiff: Conditional medical image generation with diffusion models. Bioengineering 10(11):1258, 2023
Article PubMed PubMed Central Google Scholar
Romero HFM, Hernández-Callejo L, Rebollo MÁG, Cardeñoso-Payo V, Gómez VA, Bello HJ, Moyo RT, Aragonés JIM: Synthetic dataset of electroluminescence images of photovoltaic cells by deep convolutional generative adversarial networks. Sustainability 15(9):7175, 2023
留言 (0)