Allen GC, Flores-Vergara MA, Krasynanski S et al (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325. https://doi.org/10.1038/nprot.2006.384
Article PubMed CAS Google Scholar
Baumgartner K, Fujiyoshi P, Foster GD et al (2010) Agrobacterium tumefaciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea. Appl Microbiol Biotechnol 76:7990–7996. https://doi.org/10.1128/AEM.01049-10
Cai Q, Qiao L, Wang M et al (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129. https://doi.org/10.1126/science.aar4142
Article PubMed PubMed Central CAS Google Scholar
Chang SS, Zhang Z, Liu Y (2012) RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323. https://doi.org/10.1146/annurev-micro-092611-150138
Article PubMed PubMed Central CAS Google Scholar
Chen X, Stone M, Schlagnhaufer C et al (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513. https://doi.org/10.1128/aem.66.10.4510-4513.2000
Article PubMed PubMed Central CAS Google Scholar
Chen N, Chen M, Wu T et al (2020) The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J Microbiol Biotechnol 36:140. https://doi.org/10.1007/s11274-020-02916-0
Article PubMed CAS Google Scholar
Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55. https://doi.org/10.3389/fgene.2012.00055
Article PubMed PubMed Central Google Scholar
de Groot MJ, Bundock P, Hooykaas PJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842. https://doi.org/10.1038/nbt0998-839
Ding Y, Liang S, Lei J et al (2011) Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 166:314–322. https://doi.org/10.1016/j.micres.2010.07.001
Article PubMed CAS Google Scholar
Doehlemann G, Okmen B, Zhu W et al (2017) Plant pathogenic fungi. Microbiol Spectr 5: FUNK-0023–201. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016
Doty JE, Cheo PC (1974) Light inhibition of thallus growth of Armillaria mellea. Phytopathology 64:763–764. https://doi.org/10.1094/Phyto-64-763
Ford KL, Baumgartner K, Henricot B et al (2015) A reliable in vitro fruiting system for Armillaria mellea for evaluation of Agrobacterium tumefaciens transformation vectors. Fungal Biol 119:859–869. https://doi.org/10.1016/j.funbio.2015.06.007
Article PubMed CAS Google Scholar
Ford KL, Baumgartner K, Henricot B et al (2016) A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep 6:29226. https://doi.org/10.1038/srep29226
Article PubMed PubMed Central CAS Google Scholar
Genre A, Lanfranco L, Perotto S et al (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 8:649–660. https://doi.org/10.1038/s41579-020-0402-3
Govender N, Wong MY (2017) Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology 107:483–490. https://doi.org/10.1094/PHYTO-02-16-0062-R
Article PubMed CAS Google Scholar
Guo T, Wang HC, Xue WQ et al (2016) Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS ONE 11:e0154794. https://doi.org/10.1371/journal.pone.0154794
Article PubMed PubMed Central CAS Google Scholar
Helber N, Wippel K, Sauer N et al (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823. https://doi.org/10.1105/tpc.111.089813
Article PubMed PubMed Central CAS Google Scholar
Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451. https://doi.org/10.1016/s1360-1385(00)01740-4
Article PubMed CAS Google Scholar
Hooykaas PJJ, van Heusden GPH, Niu X et al (2018) Agrobacterium-mediated transformation of yeast and fungi. In: Gelvin SB (ed) Agrobacterium Biology. Springer, London, pp 349–374
Hua Z, Teng X, Huang J et al (2024) The Armillaria response to Gastrodia elata is partially mediated by strigolactone-induced changes in reactive oxygen species. Microbiol Res 278:127536. https://doi.org/10.1016/j.micres.2023.127536
Idnurm A, Bailey AM, Cairns TC et al (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6. https://doi.org/10.1186/s40694-017-0035-0
Article PubMed PubMed Central Google Scholar
Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Article PubMed CAS Google Scholar
Leake JR (1994) The biology of myco-heterotrophic (saprophytic) plants. New Phytol 127:171–216. https://doi.org/10.1111/j.1469-8137.1994.tb04272.x
Li D, Tang Y, Lin J et al (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Fact 16:168. https://doi.org/10.1186/s12934-017-0785-7
Article PubMed PubMed Central CAS Google Scholar
Liu D, Garrigues S, de Vries RP (2023) Heterologous protein production in filamentous fungi. Appl Microbiol Biotechnol 107:5019–5033. https://doi.org/10.1007/s00253-023-12660-8
Article PubMed PubMed Central CAS Google Scholar
Merckx VSFT (2013) Mycoheterotrophy: the biology of plants living on fungi. Springer, London
Merckx V, Gomes SIF (2023) Mycoheterotrophy. Curr Biol 33:463–465. https://doi.org/10.1016/j.cub.2023.02.009
Moller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:756–771. https://doi.org/10.1038/nrmicro.2017.76
Article PubMed CAS Google Scholar
Negrao DR, Mischan MM, de Pinho SZ et al (2021) How temperature variation affects white-rot fungi mycelial growth dynamics: a nonlinear mixed models approach. Fungal Biol 125:860–868. https://doi.org/10.1016/j.funbio.2021.05.007
Ota Y, Fukuda K, Suzuki K (1998) The nonheterothallic life cycle of Japanese Armillaria mellea. Mycologia 90:396–405. https://doi.org/10.2307/3761398
Peabody RB, Peabody DC, Tyrrell MG et al (2005) Haploid vegetative mycelia of Armillaria gallica show among-cell-line variation for growth and phenotypic plasticity. Mycologia 97:777–787. https://doi.org/10.1080/15572536.2006.11832769
留言 (0)