Establishment of an efficient Agrobacterium tumefaciens-mediated transformation system for an Armillaria species, a host of the fully mycoheterotrophic plant Gastrodia elata

Allen GC, Flores-Vergara MA, Krasynanski S et al (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325. https://doi.org/10.1038/nprot.2006.384

Article  PubMed  CAS  Google Scholar 

Baumgartner K, Fujiyoshi P, Foster GD et al (2010) Agrobacterium tumefaciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea. Appl Microbiol Biotechnol 76:7990–7996. https://doi.org/10.1128/AEM.01049-10

Article  CAS  Google Scholar 

Cai Q, Qiao L, Wang M et al (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129. https://doi.org/10.1126/science.aar4142

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chang SS, Zhang Z, Liu Y (2012) RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323. https://doi.org/10.1146/annurev-micro-092611-150138

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen X, Stone M, Schlagnhaufer C et al (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513. https://doi.org/10.1128/aem.66.10.4510-4513.2000

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen N, Chen M, Wu T et al (2020) The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J Microbiol Biotechnol 36:140. https://doi.org/10.1007/s11274-020-02916-0

Article  PubMed  CAS  Google Scholar 

Chorev M, Carmel L (2012) The function of introns. Front Genet 3:55. https://doi.org/10.3389/fgene.2012.00055

Article  PubMed  PubMed Central  Google Scholar 

de Groot MJ, Bundock P, Hooykaas PJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842. https://doi.org/10.1038/nbt0998-839

Article  PubMed  Google Scholar 

Ding Y, Liang S, Lei J et al (2011) Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 166:314–322. https://doi.org/10.1016/j.micres.2010.07.001

Article  PubMed  CAS  Google Scholar 

Doehlemann G, Okmen B, Zhu W et al (2017) Plant pathogenic fungi. Microbiol Spectr 5: FUNK-0023–201. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016

Doty JE, Cheo PC (1974) Light inhibition of thallus growth of Armillaria mellea. Phytopathology 64:763–764. https://doi.org/10.1094/Phyto-64-763

Article  Google Scholar 

Ford KL, Baumgartner K, Henricot B et al (2015) A reliable in vitro fruiting system for Armillaria mellea for evaluation of Agrobacterium tumefaciens transformation vectors. Fungal Biol 119:859–869. https://doi.org/10.1016/j.funbio.2015.06.007

Article  PubMed  CAS  Google Scholar 

Ford KL, Baumgartner K, Henricot B et al (2016) A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep 6:29226. https://doi.org/10.1038/srep29226

Article  PubMed  PubMed Central  CAS  Google Scholar 

Genre A, Lanfranco L, Perotto S et al (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 8:649–660. https://doi.org/10.1038/s41579-020-0402-3

Article  CAS  Google Scholar 

Govender N, Wong MY (2017) Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology 107:483–490. https://doi.org/10.1094/PHYTO-02-16-0062-R

Article  PubMed  CAS  Google Scholar 

Guo T, Wang HC, Xue WQ et al (2016) Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS ONE 11:e0154794. https://doi.org/10.1371/journal.pone.0154794

Article  PubMed  PubMed Central  CAS  Google Scholar 

Helber N, Wippel K, Sauer N et al (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823. https://doi.org/10.1105/tpc.111.089813

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451. https://doi.org/10.1016/s1360-1385(00)01740-4

Article  PubMed  CAS  Google Scholar 

Hooykaas PJJ, van Heusden GPH, Niu X et al (2018) Agrobacterium-mediated transformation of yeast and fungi. In: Gelvin SB (ed) Agrobacterium Biology. Springer, London, pp 349–374

Chapter  Google Scholar 

Hua Z, Teng X, Huang J et al (2024) The Armillaria response to Gastrodia elata is partially mediated by strigolactone-induced changes in reactive oxygen species. Microbiol Res 278:127536. https://doi.org/10.1016/j.micres.2023.127536

Article  CAS  Google Scholar 

Idnurm A, Bailey AM, Cairns TC et al (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4:6. https://doi.org/10.1186/s40694-017-0035-0

Article  PubMed  PubMed Central  Google Scholar 

Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Article  PubMed  CAS  Google Scholar 

Leake JR (1994) The biology of myco-heterotrophic (saprophytic) plants. New Phytol 127:171–216. https://doi.org/10.1111/j.1469-8137.1994.tb04272.x

Article  PubMed  Google Scholar 

Li D, Tang Y, Lin J et al (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Fact 16:168. https://doi.org/10.1186/s12934-017-0785-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu D, Garrigues S, de Vries RP (2023) Heterologous protein production in filamentous fungi. Appl Microbiol Biotechnol 107:5019–5033. https://doi.org/10.1007/s00253-023-12660-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Merckx VSFT (2013) Mycoheterotrophy: the biology of plants living on fungi. Springer, London

Book  Google Scholar 

Merckx V, Gomes SIF (2023) Mycoheterotrophy. Curr Biol 33:463–465. https://doi.org/10.1016/j.cub.2023.02.009

Article  Google Scholar 

Moller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 15:756–771. https://doi.org/10.1038/nrmicro.2017.76

Article  PubMed  CAS  Google Scholar 

Negrao DR, Mischan MM, de Pinho SZ et al (2021) How temperature variation affects white-rot fungi mycelial growth dynamics: a nonlinear mixed models approach. Fungal Biol 125:860–868. https://doi.org/10.1016/j.funbio.2021.05.007

Article  PubMed  Google Scholar 

Ota Y, Fukuda K, Suzuki K (1998) The nonheterothallic life cycle of Japanese Armillaria mellea. Mycologia 90:396–405. https://doi.org/10.2307/3761398

Article  Google Scholar 

Peabody RB, Peabody DC, Tyrrell MG et al (2005) Haploid vegetative mycelia of Armillaria gallica show among-cell-line variation for growth and phenotypic plasticity. Mycologia 97:777–787. https://doi.org/10.1080/15572536.2006.11832769

Article  PubMed 

留言 (0)

沒有登入
gif