Proteomic Analysis Reveals Differentially Expressed Proteins in Cordyceps militaris Cultured with Different Media

Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F (2023) Chitin biosynthesis in Aspergillus species. J Fungi 9(1):89. https://doi.org/10.3390/jof9010089

Article  CAS  Google Scholar 

Cao Y, Zhang L, Yang Y, Li J, Luan X, Xia X, Gu W, Du J, Bi K, Wang L, Meng Q (2024) Proteome and gut microbiota analysis of Chinese mitten crab (Eriocheir sinensis) in response to Hepatospora eriocheir infection. Aquaculture 582:740572. https://doi.org/10.1016/j.aquaculture.2024.740572

Article  CAS  Google Scholar 

Chauhan A, Modgil M, Rajam MV, Sharma JN, Siddappa S (2023) Isolation, cloning and in silico analysis of β-tubulin gene from apple leaf blotch fungus Marssonina coronaria. Indian Phytopathol 76(2):371–382. https://doi.org/10.1007/S42360-023-00614-Z

Article  Google Scholar 

Chen L, Hong T, Li Z, Shen G, Gu Y, Han J (2023) A comparison of milk fat globule membranes and whey proteomes: new insight into variation nutrient differences between Buffalo, Cow, Goat, and Yak. Food Chem 429:136845. https://doi.org/10.1016/j.foodchem.2023.136845

Article  CAS  PubMed  Google Scholar 

Chimi MA, Dröse S, Wittig I, Heide H, Steger M, Werner A, Hamann A, Osiewacz HD, Brandt U (2013) Age-related changes in the mitochondrial proteome of the fungus Podospora anserina analyzed by 2D-DIGE and LC–MS/MS. J Proteomics 91(8):358–374. https://doi.org/10.1016/j.jprot.2013.07.008

Article  CAS  PubMed  Google Scholar 

Dong M, Zhao C, Huang Y, Zheng K, Bao G, Hu F, Peng F, Chen M, Li Z, Lu R (2024) Metabolites analysis and new bioactive compounds from the medicine food homology product of Cordyceps chanhua on artificial media. J Pharm Biomed Anal 237(5):115749. https://doi.org/10.1016/J.JPBA.2023.115749

Article  CAS  PubMed  Google Scholar 

Du C, Yang X, Long Y, Lang X, Liu L, Xu Y, Wu H, Chu Y, Hu X, Deng J, Ji Q (2023) Design, synthesis and biological evaluation of novel spiro-quinazolinone derivatives as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 255(5):115388. https://doi.org/10.1016/j.ejmech.2023.115388

Article  CAS  PubMed  Google Scholar 

Fan S, Li W, Zhang K, Zou X, Shi W, Liu Z, Tang C, Huang W, Tang F (2023) Enhanced antibody-defucosylation capability of α-L-fucosidase by proximity-based protein fusion. Biochem Biophys Res Commun 645(19):40–46. https://doi.org/10.1016/j.bbrc.2023.01.031

Article  CAS  PubMed  Google Scholar 

Fan X, Peng R (2019) Heat shock protein 70: advances in biological function and mechanism of action. Chin Bull Life Sci 31(3):270–278. https://doi.org/10.13376/j.cbls/2019039

Article  Google Scholar 

Feng X, Xu J, Liang Y, Chen GL, Fan XW, Li YZ (2017) A proteomic-based investigation of potential copper-responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal-polluted ecological niche. MicrobiologyOpen 6(4):e00485. https://doi.org/10.1002/mbo3.485

Article  CAS  PubMed  PubMed Central  Google Scholar 

Figueroa AC, Díaz MS, Alasino RV, Yang P, Soria NW, Beltramo DM (2022) Expression and localization of tubulin isotypes and its mRNAs during Thecaphora frezii developments. FEMS Microbiol Ecol 99(11):121. https://doi.org/10.1093/femsec/fiac121

Article  CAS  Google Scholar 

Galindo-Luján R, Pont L, Minic Z, Berezovski M, Sanz-Nebot V, Benavente F (2021) Characterization and differentiation of quinoa seed proteomes by label-free mass spectrometry-based shotgun proteomics. Food Chem 363:130250. https://doi.org/10.1016/j.foodchem.2021.130250

Article  CAS  PubMed  Google Scholar 

Gao X, Wang C, Dai W, Ren S, Tao F, He X, Han G, Wang W (2017) Proteomic analysis reveals large amounts of decomposition enzymes and major metabolic pathways involved in algicidal process of Trametes versicolor F21a. Sci Rep 7:3907. https://doi.org/10.1038/s41598-017-04251-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

He LY, Niu SQ, Yang CX, Tang P, Fu JJ, Tan L, Li Y, Hua YN, Liu SJ, Jin LG (2023) Cordyceps proteins alleviate lupus nephritis through modulation of the STAT3/mTOR/NF-кB signaling pathway. J Ethnopharmacol 309(12):116284. https://doi.org/10.1016/j.jep.2023.116284

Article  CAS  PubMed  Google Scholar 

Huang W, Huang P, Yü D, Li C, Huang S, Qi P, Huang S, Keyhani NO, Huang Z (2022) Proteomic analysis of a hypervirulent mutant of the insect-pathogenic fungus metarhizium anisopliae reveals changes in pathogenicity and terpenoid pathways. Microbiol Spectrum 10(6):e0076022. https://doi.org/10.1128/spectrum.00760-22

Article  CAS  Google Scholar 

Kongphop P, Krittika S, Sawanya C, Narumon P, Sittiruk R, Wirasak F (2021) Metabolic impacts of Cordycepin on hepatic proteomic expression in streptozotocin-induced type 1 diabetic mice. PLoS ONE 16(8):e0256140. https://doi.org/10.1371/journal.pone.0256140

Article  CAS  Google Scholar 

Li FS, Rong D, Bao DP, Zou G, Li Y, Lu XM, Wang Y (2024) Screening of culture media suitable for Cordyceps militaris in fresh consumption based on sensory evaluation and metabolite analysis. J Fung Res. https://doi.org/10.13341/j.jfr.2024.1659

Article  Google Scholar 

Liu L, Li B, Guo SX, Wang H, Wang ZG (2021) Differential proteomic analysis of Cordyceps militaris in association with primordium differentiation. Mycosystema 40(11):2926–2939. https://doi.org/10.13346/j.mycosystema.210292

Article  CAS  Google Scholar 

Liu X, Suo R, Wang H, Wang W, Sun J, Wang J (2024) TMT proteomics establishes correlations between solar drying and quality modifications in Penaeus vannamei. Food Chem 441:138330. https://doi.org/10.1016/j.foodchem.2023.138330

Article  CAS  PubMed  Google Scholar 

Liu YF, Xiao K, Wang Z, Wang SH, Xu FX (2021) Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS. J Food Biochem 45(6):e13735. https://doi.org/10.1111/jfbc.13735

Article  CAS  PubMed  Google Scholar 

Lv K, Yang Y, Li Q, Chen R, Deng L, Zhang Y, Jiang N (2024) Identification and comparison of milk fat globule membrane and whey proteins from Selle Français, Welsh pony, and Tieling Draft horse mare’s milk. Food Chem 437:137915. https://doi.org/10.1016/j.foodchem.2023.137915

Article  CAS  PubMed  Google Scholar 

Peng JM, Zhang DD, Huang ZY, Fu MJ (2024) The stress of fungicides changes the expression of clock protein CmFRQ and the morphology of fruiting bodies of Cordyceps militaris. J Fungi 10(2):150. https://doi.org/10.3390/jof10020150

Article  CAS  Google Scholar 

Rocha OB, Silva KSF, Junior MABC, Moraes D, Alonso A, Alonso L, Silva LC, Soares CMA, Pereira M (2022) Proteomic alterations in Paracoccidioides brasiliensis caused by exposure to curcumin. J Proteomics 266(30):104683. https://doi.org/10.1016/j.jprot.2022.104683

Article  CAS  PubMed  Google Scholar 

Wang G, Li M, Zhang C, Cheng H, Gao Y, Deng W, Li T (2020) Transcriptome and proteome analyses reveal the regulatory networks and metabolite biosynthesis pathways during the development of Tolypocladium guangdongense. Comput Struct Biotechnol J 18:2081–2094. https://doi.org/10.1016/j.csbj.2020.07.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei Y, Zhuang Y, Zhang Y, Luo L, Yu B, Zeng J (2024) Role of heat shock protein 70 in silibinin-induced apoptosis in bladder cancer. J Cancer 15(1):79–89. https://doi.org/10.7150/jca.88668

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S (2014) IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14(20):2280–2285. https://doi.org/10.1002/pmic.201300361

Article  CAS  PubMed  Google Scholar 

Wu N, Ge X, Yin X, Yang L, Chen Li, Shao R, Xu W (2024) A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 260(1):129336. https://doi.org/10.1016/j.ijbiomac.2024.129336

Article  CAS  PubMed  Google Scholar 

Xi L, Shen Y, Zhao X, Zhou M, Mi Y, Li X, Chen H, Wei Y, Su H, Hou H (2021) Effects of arbuscular mycorrhizal fungi on frond antimony enrichment, morphology, and proteomics in Pteris cretica var. nervosa during antimony phytoremediation. Sci Total Environ 804(15):149904. https://doi.org/10.1016/j.scitotenv.2021.149904

Article 

留言 (0)

沒有登入
gif