Effects of infant feeding type on auditory event-related potentials at 24 months of age

Romberg, A. R. & Saffran, J. R. Statistical learning and language acquisition. Wiley Interdiscip. Rev. Cogn. Sci. 1, 906–914 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Morgan, E. U. et al. Meaning before grammar: a review of ERP experiments on the neurodevelopmental origins of semantic processing. Psychon. Bull. Rev. 27, 441–464 (2020).

Article  PubMed  Google Scholar 

Saffran, J. R. & Kirkham, N. Z. Infant statistical learning. Annu. Rev. Psychol. 69, 181–203 (2018).

Article  PubMed  Google Scholar 

Nelson, C. A. 3rd & McCleery, J. P. Use of event-related potentials in the study of typical and atypical development. J. Am. Acad. Child Adolesc. Psychiatry 47, 1252–1261 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Jing, H. & Benasich, A. A. Brain responses to tonal changes in the first two years of life. Brain Dev. 28, 247–256 (2006).

Article  PubMed  Google Scholar 

Cheour, M. et al. Maturation of mismatch negativity in infants. Int. J. Psychophysiol. 29, 217–226 (1998).

Article  CAS  PubMed  Google Scholar 

Ortiz-Mantilla, S., Hämäläinen, J. A. & Benasich, A. A. Time course of ERP generators to syllables in infants: a source localization study using age-appropriate brain templates. Neuroimage 59, 3275–3287 (2012).

Article  PubMed  Google Scholar 

Ceponiene, R. et al. Event-related potentials reflect spectral differences in speech and non-speech stimuli in children and adults. Clin. Neurophysiol. 119, 1560–1577 (2008).

Article  CAS  PubMed  Google Scholar 

Getz, L. M. & Toscano, J. C. Electrophysiological evidence for top-down lexical influences on early speech perception. Psychol. Sci. 30, 830–841 (2019).

Article  PubMed  Google Scholar 

Noe, C. & Fischer-Baum, S. Early lexical influences on sublexical processing in speech perception: evidence from electrophysiology. Cognition 197, 104162 (2020).

Article  PubMed  Google Scholar 

Fontecha, J. et al. Sources, production, and clinical treatments of milk fat globule membrane for infant nutrition and well-being. Nutrients 12, 1607 (2020).

Oshida, K. et al. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr. Res. 53, 589–593 (2003).

Article  CAS  PubMed  Google Scholar 

Liu, H. et al. Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. J. Nutr. 144, 1903–1909 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brink, L. R., Gueniot, J. P. & Lönnerdal, B. Effects of milk fat globule membrane and its various components on neurologic development in a postnatal growth restriction rat model. J. Nutr. Biochem 69, 163–171 (2019).

Article  CAS  PubMed  Google Scholar 

Schneider, N. et al. A nutrient formulation affects developmental myelination in term infants: a randomized clinical trial. Front Nutr. 9, 823893 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Schneider, N. et al. Impact of a nutrient formulation on longitudinal myelination, cognition, and behavior from birth to 2 years: a randomized clinical trial. Nutrients 15, 4439 (2023).

Veereman-Wauters, G. et al. Milk fat globule membrane (inpulse) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 28, 749–752 (2012).

Article  CAS  PubMed  Google Scholar 

Gurnida, D. A. et al. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum. Dev. 88, 595–601 (2012).

Article  CAS  PubMed  Google Scholar 

Timby, N. et al. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am. J. Clin. Nutr. 99, 860–868 (2014).

Article  CAS  PubMed  Google Scholar 

Li, F. et al. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. J. Pediatr. 215, 24–31.e28 (2019).

Article  CAS  PubMed  Google Scholar 

Colombo, J. et al. Improved neurodevelopmental outcomes at 5.5 years of age in children who received bovine milk fat globule membrane and lactoferrin in infant formula through 12 months: a randomized controlled trial. J. Pediatr. 261, 113483 (2023).

Billeaud, C. et al. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: a randomized controlled multicenter non-inferiority trial in healthy term infants. Clin. Med Insights Pediatr. 8, 51–60 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Timby, N. et al. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 60, 384–389 (2015).

Article  CAS  PubMed  Google Scholar 

Li, X. et al. Feeding infants formula with probiotics or milk fat globule membrane: a double-blind, randomized controlled trial. Front Pediatr 7, 347 (2019).

Hedrick, J. et al. Infant formula with added bovine milk fat globule membrane and modified iron supports growth and normal iron status at one year of age: a randomized controlled trial. Nutrients 13, 4541 (2021).

Jaramillo-Ospina, A. M. et al. Added bovine milk fat globule membrane in formula: growth, body composition, and safety through age 2: an rct. Nutrition 97, 111599 (2022).

Article  CAS  PubMed  Google Scholar 

Toro-Campos, R. et al. Effect of feeding mode on infant growth and cognitive function: study protocol of the Chilean infant nutrition randomized controlled trial (ChINuT). BMC Pediatr. 20, 225 (2020).

Jaramillo-Ospina, A. M. et al. Micronutrient, metabolic, and inflammatory biomarkers through 24 months of age in infants receiving formula with added bovine milk fat globule membrane through the first year of life: a randomized controlled trial. J. Nutr. 153, 511–522 (2023).

Article  CAS  PubMed  Google Scholar 

Rivera-Gaxiola, M. et al. Principal component analyses and scalp distribution of the auditory P150-250 and N250-550 to speech contrasts in Mexican and American infants. Dev. Neuropsychol. 31, 363–378 (2007).

Article  PubMed  Google Scholar 

Choudhury, N. & Benasich, A. A. Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clin. Neurophysiol. 122, 320–338 (2011).

Article  PubMed  Google Scholar 

Mills, D. L. et al. Language experience and the organization of brain activity to phonetically similar words: Erp evidence from 14- and 20-month-olds. J. Cogn. Neurosci. 16, 1452–1464 (2004).

Article  PubMed  Google Scholar 

Slugocki, C. & Trainor, L. J. Cortical indices of sound localization mature monotonically in early infancy. Eur. J. Neurosci. 40, 3608–3619 (2014).

Article  PubMed  Google Scholar 

Norton, E. S. et al. ERP mismatch negativity amplitude and asymmetry reflect phonological and rapid automatized naming skills in English-speaking kindergartners. Front Hum. Neurosci. 15, 624617 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Silva, D. M., Melges, D. B. & Rothe-Neves, R. N1 response attenuation and the mismatch negativity (mmn) to within- and across-category phonetic contrasts. Psychophysiology 54, 591–600 (2017).

Article  PubMed  Google Scholar 

Kuhl, P. K. Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5, 831–843 (2004).

Article  CAS  PubMed  Google Scholar 

Garcia-Sierra, A., Ramírez-Esparza, N. & Kuhl, P. K. Relationships between quantity of language input and brain responses in bilingual and monolingual infants. Int. J. Psychophysiol. 110, 1–17 (2016).

Article  PubMed  Google Scholar 

Kuhl, P. K. et al. Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Dev. Sci. 9, F13–F21 (2006).

Article  PubMed  Google Scholar 

Digeser, F. M., Wohlberedt, T. & Hoppe, U. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables. Ear Hear 30, 704–712 (2009).

Article  PubMed 

留言 (0)

沒有登入
gif