Human liver stem cells and derived extracellular vesicles protect from sepsis-induced acute lung injury and restore bone marrow myelopoiesis in a murine model of sepsis

Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet Lond Engl 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

Article  Google Scholar 

Shankar-Hari M, Phillips GS, Levy ML et al (2016) Developing a new definition and assessing new clinical criteria for septic shock. JAMA 315:775–787. https://doi.org/10.1001/jama.2016.0289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vincent J-L, Jones G, David S et al (2019) Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Crit Care 23:196. https://doi.org/10.1186/s13054-019-2478-6

Article  PubMed  PubMed Central  Google Scholar 

Kwok AJ, Allcock A, Ferreira RC et al (2023) Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis. Nat Immunol 24:767–779. https://doi.org/10.1038/s41590-023-01490-5

Article  CAS  PubMed  Google Scholar 

Johnson CL, Soeder Y, Dahlke MH (2017) Concise review: mesenchymal stromal cell-based approaches for the treatment of acute respiratory distress and sepsis syndromes. Stem Cells Transl Med 6:1141–1151. https://doi.org/10.1002/sctm.16-0415

Article  PubMed  PubMed Central  Google Scholar 

Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801. https://doi.org/10.1001/jama.2016.0287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghimire S, Ravi S, Budhathoki R et al (2021) Current understanding and future implications of sepsis-induced thrombocytopenia. Eur J Haematol 106:301–305. https://doi.org/10.1111/ejh.13549

Article  PubMed  Google Scholar 

Loftus TJ, Mohr AM, Moldawer LL (2018) Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult. Curr Opin Hematol 25:37–43. https://doi.org/10.1097/MOH.0000000000000395

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874. https://doi.org/10.1038/nri3552

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu VX, Fielding-Singh V, Greene JD et al (2017) The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med 196:856–863. https://doi.org/10.1164/rccm.201609-1848OC

Article  PubMed  PubMed Central  Google Scholar 

Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45:486–552. https://doi.org/10.1097/CCM.0000000000002255

Article  PubMed  Google Scholar 

Seymour CW, Gesten F, Prescott HC et al (2017) Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 376:2235–2244. https://doi.org/10.1056/NEJMoa1703058

Article  PubMed  PubMed Central  Google Scholar 

Laroye C, Gibot S, Huselstein C, Bensoussan D (2020) Mesenchymal stromal cells for sepsis and septic shock: lessons for treatment of COVID-19. Stem Cells Transl Med 9:1488–1494. https://doi.org/10.1002/sctm.20-0239

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lalu MM, Sullivan KJ, Mei SH et al (2016) Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. Elife. https://doi.org/10.7554/eLife.17850

Article  PubMed  PubMed Central  Google Scholar 

Mei SHJ, Haitsma JJ, Dos Santos CC et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057. https://doi.org/10.1164/rccm.201001-0010OC

Article  CAS  PubMed  Google Scholar 

Németh K, Leelahavanichkul A, Yuen PST et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49. https://doi.org/10.1038/nm.1905

Article  CAS  PubMed  Google Scholar 

McIntyre LA, Stewart DJ, Mei SHJ et al (2018) Cellular immunotherapy for septic shock. A Phase I clinical trial. Am J Respir Crit Care Med 197:337–347. https://doi.org/10.1164/rccm.201705-1006OC

Article  CAS  PubMed  Google Scholar 

Schlosser K, Wang J-P, Dos Santos C et al (2019) Effects of Mesenchymal Stem Cell Treatment on Systemic Cytokine Levels in a Phase 1 Dose Escalation Safety Trial of Septic Shock Patients. Crit Care Med 47:918–925. https://doi.org/10.1097/CCM.0000000000003657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Blanc K, Davies LC (2015) Mesenchymal stromal cells and the innate immune response. Immunol Lett 168:140–146. https://doi.org/10.1016/j.imlet.2015.05.004

Article  CAS  PubMed  Google Scholar 

Abbasi B, Shamsasenjan K, Ahmadi M et al (2022) Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 13:97. https://doi.org/10.1186/s13287-022-02777-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quaglia M, Fanelli V, Merlotti G et al (2022) Dual role of extracellular vesicles in sepsis-associated kidney and lung injury. Biomedicines 10:2448. https://doi.org/10.3390/biomedicines10102448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y, Cao X, Qin L (2020) Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy for sepsis. Front Immunol 11:647. https://doi.org/10.3389/fimmu.2020.00647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrera MB, Bruno S, Buttiglieri S et al (2006) Isolation and Characterization of a Stem Cell Population from Adult Human Liver. Stem Cells 24:2840–2850. https://doi.org/10.1634/stemcells.2006-0114

Article  CAS  PubMed  Google Scholar 

Bruno S, Herrera Sanchez MB, Chiabotto G et al (2021) Human liver stem cells: a liver-derived mesenchymal stromal cell-like population with pro-regenerative properties. Front Cell Dev Biol 9:644088. https://doi.org/10.3389/fcell.2021.644088

Article  PubMed  PubMed Central  Google Scholar 

Bruno S, Herrera Sanchez MB, Pasquino C et al (2019) Human liver-derived stem cells improve fibrosis and inflammation associated with nonalcoholic steatohepatitis. Stem Cells Int 2019:6351091. https://doi.org/10.1155/2019/6351091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrera MB, Fonsato V, Bruno S et al (2013) Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 57:311–319. https://doi.org/10.1002/hep.25986

Article  CAS  PubMed  Google Scholar 

Fonsato V, Lena MD, Tritta S, et al (2018) Human liver stem cell-derived extracellular vesicles enhance cancer stem cell sensitivity to tyrosine kinase inhibitors through Akt/mTOR/PTEN combined modulation. Oncotarget 9:36151. https://doi.org/10.18632/oncotarget.26319

Fanelli V, Puntorieri V, Assenzio B et al (2010) Pulmonary-derived phosphoinositide 3-kinase gamma (PI3Kγ) contributes to ventilator-induced lung injury and edema. Intensive Care Med 36:1935–1945. https://doi.org/10.1007/s00134-010-2018-y

Article  CAS  PubMed 

留言 (0)

沒有登入
gif