Ministério da Saúde: Guia de Orientações para o Método Canguru na Atenção Básica: Cuidado Compartilhado. Available at: https://bvsms.saude.gov.br/bvs/publicacoes/guia_orientacoes_metodo_canguru.pdf. accessed on: 10 April 2024 (2016)
UNICEF: Mortalidade Materna e na Infância - Mulheres e crianças estão sobrevivendo cada vez mais. Available at: https://shortlurl.com/3Ypr. accessed on: 15 June 2024 (2019)
World Health Organization: UNICEF-WHO Low Birthweight Estimates: Levels and Trends 2000-2015. Technical Report WHO/NMH/NHD/19.21, World Health Organization (2019)
World Health Organization: Feeding of very-low-birth-weight infants. https://www.who.int/tools/elena/interventions/feeding-vlbw-infants. accessed on: 14 june 2024 (2023)
Ministerio da Saúde: Ações Programáticas Estratégicas D. Gestação de alto risco: manual técnico. Available at: https://www.who.int/tools/elena/interventions/feeding-vlbw-infants. accessed on: 14 june 2024 (2022)
Lee, H.C., Liu, J., Profit, J., Hintz, S.R., Gould, J.B.: Survival without major morbidity among very low birth weight infants in california. Pediatrics 146(1) (2020). https://doi.org/10.1542/peds.2019-3865
Belfort GP, et al. Determinantes do baixo peso ao nascer em filhos de adolescentes: uma análise hierarquizada. Ciência & Saúde Coletiva. 2018;23:2609–20. https://doi.org/10.1590/1413-81232018238.13972016.
Silva ER, Silva MGP. Perfil de recém-nascidos de baixo peso ao nascer no estado de pernambuco. Revista de Enfermagem Digital Cuidado e Promoção Saúde, Recife. 2021;3:1–6. https://doi.org/10.5935/2446-5682.20210011.
Giovanola B, Tiribelli S. Beyond bias and discrimination: Redefining the ai ethics principle of fairness in healthcare machine-learning algorithms. AI & Society. 2023;38(2):549–63. https://doi.org/10.1007/s00146-022-01455-6.
da Silva Rocha E, et al. On usage of artificial intelligence for predicting mortality during and post-pregnancy: a systematic review of literature. BMC Med Inform Decis Mak. 2022;22(1):334. https://doi.org/10.1186/s12911-022-02082-3.
Freeman, I., Haigler, A., Schmeelk, S., Ellrodt, L., Fields, T.: What are they researching? examining industry-based doctoral dissertation research through the lens of machine learning. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1338–1340 (2018). IEEE
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/a:1010933404324.
Ayyadevara, V.K.: Gradient boosting machine. In: Pro Machine Learning Algorithms, pp. 117–134. Springer, ??? (2018)
Cao Y, Miao Q-G, Liu J-C, Gao L. Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica. 2013;39(6):745–58. https://doi.org/10.1016/s1874-1029(13)60052-x.
Schapire, R.E.: Explaining adaboost. In: Empirical Inference, pp. 37–52. Springer, ??? (2013)
Lorena, A.C., Carvalho, A.C.P.L.F.D.: Uma introdução às support vector machines. Revista de Informática Teórica e Aplicada 14(2), 43–67 (2007). https://doi.org/10.22456/2175-2745.5690
Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24(12):1565–7. https://doi.org/10.1038/nbt1206-1565.
Bhavsar H, Ganatra A. A comparative study of training algorithms for supervised machine learning. International Journal of Soft Computing and Engineering (IJSCE). 2012;2(4):2231–307.
Zhang S, Cheng D, Deng Z, Zong M, Deng X. A novel k NN algorithm with data-driven k parameter computation. Pattern Recogn Lett. 2018;109:44–54. https://doi.org/10.1016/j.patrec.2017.09.036.
Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 2020;415:295–316.
Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Mockus, J., Tiesis, V., Zilinskas, A.: The application of bayesian methods for seeking the extremum. In: Towards Global Optimization vol. 2, pp. 117–129 (1978)
Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: No regret and experimental design. In: Proceedings of the 27th International Conference on Machine Learning (2010)
Gad AG. Particle swarm optimization algorithm and its applications: A systematic review. Archives of Computational Methods in Engineering. 2022;29:2531–61. https://doi.org/10.1007/s11831-021-09694-4.
Article MathSciNet Google Scholar
Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Comput. 2018;22:387–408. https://doi.org/10.1007/s00500-016-2474-6.
Ali A, Shamsuddin SM, Ralescu AL. Classification with class imbalance problem: A review. International Journal of Advanced Soft Computing and its Applications. 2015;7(3):176–204.
Kusuma WA, Rahmi AS, Heryanto R. Implementation of hybrid sampling technique for predicting active compound and protein interaction in unbalanced dataset. IOP Conference Series: Earth and Environmental Science. 2019;335:012005. https://doi.org/10.1088/1755-1315/335/1/012005.
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366:447–53. https://doi.org/10.1126/science.aax2342.
Chung Y, et al. Automated data slicing for model validation: A big data-ai integration approach. IEEE Trans Knowl Data Eng. 2019;32(12):2284–96. https://doi.org/10.1109/TKDE.2019.2916074.
Borson, N.S., Kabir, M.R., Zamal, Z., Rahman, R.M.: Correlation analysis of demographic factors on low birth weight and prediction modeling using machine learning techniques. In: 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 169–173 (2020). IEEE
Alabbad DA, Ajibi SY, Alotaibi RB, Alsqer NK, Alqahtani RA, Felemban NM, Rahman A, Aljameel SS, Ahmed MIB, Youldash MM. Birthweight range prediction and classification: A machine learning-based sustainable approach. Machine Learning and Knowledge Extraction. 2024;6(2):770–88.
Cho H, Lee EH, Lee K-S, Heo JS. Machine learning-based risk factor analysis of adverse birth outcomes in very low birth weight infants. Sci Rep. 2022;12(1):12119.
Zhang C, Yu X, Zhang B. Assessment of supervised longitudinal learning methods: Insights from predicting low birth weight and very low birth weight using prenatal ultrasound measurements. Comput Biol Med. 2024;182:109084.
Shwartz-Ziv R, Armon A. Tabular data: Deep learning is not all you need. Information Fusion. 2022;81:84–90.
Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on typical tabular data? Adv Neural Inf Process Syst. 2022;35:507–20.
SINASC: Apresentação do SINASC. accessed on: 20 june 2024 (2024). https://svs.aids.gov.br/daent/cgiae/sinasc/apresentacao/
Gravena AAF, et al. Maternal age and factors associated with perinatal outcomes. ACTA Paulista de Enfermagem. 2013;26:130–5. https://doi.org/10.1590/S0103-21002013000200005.
Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best Practice & Research Clinical Obstetrics & Gynaecology. 2021;70:2–9. https://doi.org/10.1016/j.bpobgyn.2020.06.006. (Epub 2020 Jun 24).
Miao J, Niu L. A survey on feature selection. Procedia Computer Science. 2016;91:919–26. https://doi.org/10.1016/j.procs.2016.07.111.
Kuhle S, Maguire B, Zhang H, et al. Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study. BMC Pregnancy Childbirth. 2018;18(1):333. https://doi.org/10.1186/s12884-018-1971-2.
Zahirzada, A., Lavangnananda, K.: Implementing predictive model for low birth weight in afghanistan. In: 2021 13th International Conference on Knowledge and Smart Technology (KST), Bangsaen, Chonburi, Thailand, pp. 67–72 (2021). https://doi.org/10.1109/KST51265.2021.9415792
Kader M, Perera NKP. Socio-economic and nutritional determinants of low birth weight in india. N Am J Med Sci. 2014;6(7):302–8. https://doi.org/10.4103/1947-2714.136902.
Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight–reconsidering the use of race correction in clinical algorithms. N Engl J Med. 2020;383(9):874–82. https://doi.org/10.1056/NEJMms2004740.
Noor, P.: Can we trust ai not to further embed racial bias and prejudice? BMJ (Clinical Research Edition) 368, 363 (2020). https://doi.org/10.1136/bmj.m363
Wu J, Zhu X, Lin Z, Ma W. Hyperparameter optimization for machine learning models based on bayesian optimization. Journal of Electronic Science and Technology. 2019;17(1):26–40. https://doi.org/10.11989/JEST.1674-862X.80904120.
Gad AG. Particle swarm optimization algorithm and its applications: A systematic review. Archives of Computational Methods in Engineering. 2022;29:2531–61. https://doi.org/10.1007/s11831-021-09694-4.
Article MathSciNet Google Scholar
de Geografia e Estatística, I.B.: Tabela 9605 - População residente, por cor ou raça, nos Censos Demográficos. Acessed on: 28 jun. 2024 (2024). https://sidra.ibge.gov.br/tabela/9605#resultado
Alt L, et al. O que é design thinking? Revista Coaching Brasil. 2017;213:14–7.
留言 (0)