On the application of nanosecond laser flash photolysis to the investigation of the photoreactivity of di and triarylamines

Bowen, E. J., & Eland, J. H. D. (1963). Photochemistry of diphenylamine solutions (p. 202). Proc. Chem. Soc.

Google Scholar 

Grellmann, K. H., Sherman, G. M., & Linschitz, H. (1963). Photo-conversion of diphenylamines to carbazoles, and accompanying transient species. Journal of the American Chemical Society, 85, 1881.

See for instance: Shizuka, H., Takayama, Y., Tanaka, I., & Morita T. (1970). Kinetics and mechanism of the photocyclization of diphenylamines. I. Photochemical primary processes of diphenylamines. Journal of the American Chemical Society, 92, 7270–7277.

Rahn, R., Schroeder, J., Troe, J., & Grellmann, K. H. J. (1989). Photostability of fluorescent dyes for single-molecule spectroscopy: Mechanisms and experimental methods for estimating photobleaching in aqueous solution. Physical Chemistry, 93, 7841–7846.

Article  CAS  Google Scholar 

Linschitz, L., & Grellmann, K. H. (1964). Reaction pathways in the photochemical conversion of diphenylamines to carbazoles. Journal of the American Chemical Society, 86, 303.

Article  CAS  Google Scholar 

Suzuki, T., Kajii, Y., Shibuya, K., & Obi, K. (1992). Photocyclization of diphenylamine studied by time-resolved thermal lensing. heat of reaction, energetics, and reactivity of intermediates. Bulletin, Chemical Society of Japan, 65, 1084–1088.

Article  CAS  Google Scholar 

For irradiation of N-methyldiphenylamine, see: Shizuka, H., Takayama, Y., Morita, T., Matsumoto, S., & Tanaka, I. (1971). Kinetics and mechanism of the photocyclization of diphenylamines. II. Photochemical secondary processes of diphenylamines. Journal of the American Chemical Society, 93, 5987–5992.

Forster, E. W., Grellmann, K. H., & Linschitz, H. (1973). Reaction patterns and kinetics of the photoconversion of N-methyldiphenylamine to N-methylcarbazole. Journal of the American Chemical Society, 95, 3108–3115.

Article  Google Scholar 

Fischer, G., Fischer, E., Grellmann, K. H., Linschitz, H., & Temizer, H. (1974). Photoconversion of N-methyldiphenylamine to N-methylcarbazole. Calculated and observed quantum yields as a function of oxygen concentration. Journal of the American Chemical Society, 96, 6267–6269.

Grellmann, K. H., Kuhnle, W., Weller, H., & Wolff, T. (1981). Photochemical formation of dihydrocarbazoles from diphenylamines and their thermal rearrangement and disproportionation reactions. Journal of the American Chemical Society, 103, 6889–6893.

Fleming, I. (2015). Pericyclic reactions. Oxford Science Publications/Oxford University Press.

Google Scholar 

For irradiation of triphenylamine, see: (a) Forster E. W., & Grellmann, K. H. (1972). The light-induced conversion of triphenylamine to the excited triplet state of 11, 12-dihydrocarbazole. Chemical Physics Letters, 14, 536–538.

Goerner, H. (2008). Photoinduced oxygen uptake of diphenylamines in solution and their ring closure revisited. The Journal of Physical Chemistry, 112, 1245–1250.

Seo, E. T., Nelson, R. F., Fritsch, J. M., Macoux, L. S., Leedy, D. T., & Adams, R. N. (1966). Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. Journal of the American Chemical Society, 88, 3498–3503.

Article  CAS  Google Scholar 

Ambrose, J. F., Carpenter, L. L., & Nelson, R. F. (1975). Electrochemical and spectroscopic properties of cation radicals: III. Reaction pathways of carbazolium radical ions. Journal of the Electrochemical Society, 122, 876–894.

Horn, E. J., Rosen, B. R., & Baran, P. S. (2016). Synthetic organic electrochemistry: An enabling and innately sustainable method. ACS Central Science, 2, 302–308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schotten, C., Nicholls, T. P., Bourne, R. A., Kapur, N., Nguyen, B. N., & Willans, C. E. (2020). Making electrochemistry easily accessible to the synthetic chemist. Green Chemistry, 22, 3358–3375.

Article  CAS  Google Scholar 

Fuchigami, T., Mitomo, K., & Ishii, H. (2001). Photochemical formation of dihydrocarbazoles from diphenylamines and their thermal rearrangement and disproportionation reactions. Journal of Electroanalytical Chemistry, 507, 30–33.

Article  CAS  Google Scholar 

Fuchigami, T., Tetsu, M., Tajima, T., & Ishii, H. (2001). Indirect anodic monofluorodesulfurization of β-phenylsulfenyl β-lactams using a triarylamine mediator. Synlett, 8, 1269–1271.

Article  Google Scholar 

Shen, Y., Suzuki, K., Atobe, M., & Fuchigami, M. (2003). Indirect anodic fluorodesulfurization of S-aryl thiobenzoates using a triarylamine mediator. Journal of Electroanalytical Chemistry, 540, 189–194.

Shen, Y., Hattori, H., Ding, K., Atobe, M., & Fuchigami, T. (2006). Triarylamine mediated desulfurization of S-arylthiobenzoates and a tosylhydrazone derivative. Electrochimica Acta, 51, 2819–2824.

Article  CAS  Google Scholar 

Creutz, S. E., Lotito, K. J., Fu, G. C., & Peters, J. C. (2012). Photoinduced ullmann C–N coupling: Demonstrating the viability of a radical pathway. Science, 338, 647–651.

Article  CAS  PubMed  Google Scholar 

Quiroz-Guzman, M., & Brown, S. N. (2010). Acta Crystallographica Section C-Crystal Structure Communications, 66, 171–173.

Article  Google Scholar 

Lopez, L., Farinola, G. M., Naci, N., & Sportelli, S. (1998). Monodeoxygenation of spiro adamantane-1,2-dioxetanes induced by aminium salt. Tetrahedron, 54, 6939–6946.

Article  CAS  Google Scholar 

Lopez, L., Troisi, L., & Melel, G. (1991). Electron-transfer reactions of hindered olefins induced by aminium salts. Tetrahedron Letters, 32, 117–120.

Article  CAS  Google Scholar 

Yueh, W., & Bauld, N. L. (1997). Mechanistic aspects of the substrate ionization step in aminium salt catalyzed cyclopropanation. Research on Chemical Intermediates, 23, 1–16.

Article  CAS  Google Scholar 

Yueh, W., & Bauld, N. L. (1995). Mechanistic criteria for cation radical reactions: aminium salt-catalyzed cyclopropanation. Journal of the American Chemical Society, 117, 5671–5676.

Park, K. H., Jun, K., Sim, S. R., & Oh, S. W. (1997). Cation radicals with 2-phridylhydrazones in nitrile solvents s-triazolo[4,3-a]pyridines by thianthrene cation radical perchlorate and 1-(2-pyridyl)-1,2,4-triazoles by tris(2,4-dibromophenyl)-aminium hexachloroantimonate. Bulletin of the Korean Chemical Society, 18, 604–608.

CAS  Google Scholar 

Breslin, D. T., & Fox, M. A. (1994). Photochemical electrocyclization of thermally stable triarylamine radical cations. The Journal of Organic Chemistry, 59, 7557–7561.

Breslin, D. T., & Fox, M. A. (1994). Excited-state behavior of thermally stable radical ions. Journal of Physical Chemistry, 98, 408–411.

Article  CAS  Google Scholar 

Braslavsky, S. E., & Heibel, G. E. (1992). Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chemical Reviews, 92, 1381–1410.

Article  CAS  Google Scholar 

Peters, K. S. (1994). Time-resolved photoacoustic calorimetry: From carbenes to proteins. Angewandte Chemie International Edition, 33, 294–302.

Article  Google Scholar 

Gensch, T., & Viappiani, C. (2003). Time-resolved photothermal methods: Accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology. Photochemical and Photobiological Sciences, 2, 699–721.

Article  CAS  PubMed  Google Scholar 

Goerner, H. (2008). Photoinduced oxygen uptake of diphenylamines in solution and their ring closure revisited. Journal of Physical Chemistry A, 112, 1245–1250.

Article  CAS  Google Scholar 

Romero, I. E., Postigo, A., & Bonesi, S. M. (2023). Solvent effects on the photoinduced [6π]-electrocyclization reactions of mono-, di-, and trisubstituted arylamines: photophysical, preparative photochemistry, and mechanistic investigations. The Journal of Organic Chemistry, 88, 4405−4421.

Forster, E. W., & Grellmann, K. H. (1972). Photocyclization mechanism of N-substituted diphenylamines. Journal of the American Chemical Society, 94, 634–635.

Article  Google Scholar 

Leone, A., & Mariano P. S. (1981). The photochemistry of 3-heteroatom substituted 1,4-dienes. Research on Chemical Intermediates, 4, 81–119.

Amano, K., Hinohara, T., & Hoshino, M. (1991). Effects of hydrogen bonding on the photocyclization of diphenylamines. Journal of Photochemistry and Photobiology, A: Chemistry, 59, 43–54.

Article  CAS  Google Scholar 

Bonesi, S. M., Dondi, S., Protti, S., Fagnoni, M., & Albini, A. (2014). (Co) oxidation/cyclization processes upon irradiation of triphenylamine. Tetrahedron Letters, 55, 2932–2935.

Article  CAS  Google Scholar 

Protti, S., Mella, M., & Bonesi, S. M. (2021). Photochemistry of triphenylamine (TPA) in homogeneous solution and the role of transient N-phenyl-4a,4b-dihydrocarbazole. A steady-state and time-resolved investigation. New Journal of Chemistry, 45, 16581–16593.

Article  CAS  Google Scholar 

Johnston, L. J., & Redmond, R. W. (1997). Triplet state mechanism for diphenylamine photoionization. Journal of Physical Chemistry A, 101, 4660–4665.

Article  CAS  Google Scholar 

Grellmann, K. H., Kühxle, W., & Wolff, T. (1976). Photochemical ring closure reactions of aromatic enamines. A flash-photolytic study. Zeitschrift Physikalische Chemie Neue Folge, 101, 295–306.

Article  CAS  Google Scholar 

Chapman, O. L., Eian, G. L., Bloom, A., & Clardy, J. (1971). Photochemical transormations. XXXVIII. Nonoxidative photocyclization of N-aryl enamines. A facile synthetic entry to trans-hexahydrocarbazoles, Journal of the American Chemical Society, 93, 2918–2928.

Bonesi, S. M., Protti S., & Albini, A. (2018). Photochemical co-oxidation of sulfides and phosphines with tris(p-bromophenyl)amine. A mechanistic study. The Journal of Organic Chemistry, 83, 8104–8113.

Bonesi, S. M., Mella, M., Merli, D., & Protti, S. (2021). Photochemistry of tris(2,4-dibromophenyl)amine and its application to co-oxidation on sulfides and phosphines. Photochemistry and Photobiology, 97, 1278–1288.

Article  CAS  PubMed  Google Scholar 

Sur, D., Purkayastha, P., & Chattopadhyay, N. (2000). Kinetics of the photoconversion of diphenylamine in β-cyclodextrin environments. Journal of Photochemistry and Photobiology A: Chemistry, 134, 17–21.

Vaya, I., Lhiaubet-Vallet, V., Jimenez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: Drug–protein supramolecular systems. Chemical Society Reviews, 43, 4102.

Article  CAS  PubMed  Google Scholar 

Marin, M., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Enhanced photochemical [6π] electrocyclization within the lipophilic protein binding site. Organic Letters, 14, 1788–1791.

Article  CAS  PubMed  Google Scholar 

Roessler, N., & Wolff, T. (1980). Oxygen quenching in micellar solution and its effect on the photocyclization of N-methyldiphenylamine. Photochemistry and Photobiology, 31, 547–552.

Article  CAS  Google Scholar 

Sanmartin, R. A., Salum, M. L., Protti, S., Mella, M., & Bonesi, S. M. (2022). The photoinduced electrocyclization reaction of triphenylamine (TPA) in sustainable and confined micellar solutions: A steady-state and laser flash photolysis approach. ChemPhotoChem, 6, e202100247.

Article 

留言 (0)

沒有登入
gif