The Training Intensity Distribution of Marathon Runners Across Performance Levels

Kenneally M, Casado A, Santos-Concejero J. The effect of periodization and training intensity distribution on middle- and long-distance running performance: a systematic review. Int J Sports Physiol Perform. 2018;13:1114–21.

Article  PubMed  Google Scholar 

Campos Y, Casado A, Vieira JG, Guimarães M, Sant’Ana L, Leitão L, et al. Training-intensity distribution on middle- and long-distance runners: a systematic review. Int J Sports Med. 2022;43:305–16.

Article  PubMed  Google Scholar 

Sperlich B, Matzka M, Holmberg HC. The proportional distribution of training by elite endurance athletes at different intensities during different phases of the season. Front Sports Act Living. 2023;5:1258585.

Article  PubMed  PubMed Central  Google Scholar 

Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16:49–56.

Article  PubMed  Google Scholar 

Skinner JS, McLellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport. 1980;51:234–48.

Article  CAS  PubMed  Google Scholar 

Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh STJ, et al. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol. 2017;122:446–59.

Article  CAS  PubMed  Google Scholar 

Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50:1729–56.

Article  PubMed  Google Scholar 

Meyler S, Bottoms L, Wellsted D, Muniz-Pumares D. Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Exp Physiol. 2023;108:581–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard.’ Physiol Rep. 2019. https://doi.org/10.14814/phy2.14292.

Article  PubMed  PubMed Central  Google Scholar 

Coates AM, Joyner MJ, Little JP, Jones AM, Gibala MJ. A perspective on high-intensity interval training for performance and health. Sports Med. 2023;53:85–96.

Article  PubMed  PubMed Central  Google Scholar 

Treff G, Winkert K, Sareban M, Steinacker JM, Sperlich B. The polarization-index: a simple calculation to distinguish polarized from non-polarized training intensity distributions. Front Physiol. 2019;10: 433208.

Article  Google Scholar 

Neal CM, Hunter AM, Brennan L, O’Sullivan A, Hamilton DL, DeVito G, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114:461–71.

Article  CAS  PubMed  Google Scholar 

Casado A, González-Mohíno F, González-Ravé JM, Foster C. Training periodization, methods, intensity distribution, and volume in highly trained and elite distance runners: a systematic review. Int J Sports Physiol Perform. 2022;17:820–33.

Article  PubMed  Google Scholar 

Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295.

Article  PubMed  PubMed Central  Google Scholar 

Foster C, Casado A, Esteve-Lanao J, Haugen T, Seiler S. Polarized training is optimal for endurance athletes. Med Sci Sports Exerc. 2022;54:1028–31.

Article  PubMed  Google Scholar 

Burnley M, Bearden SE, Jones AM. Polarized training is not optimal for endurance athletes. Med Sci Sports Exerc. 2022;54:1032–4.

Article  PubMed  Google Scholar 

Kenneally M, Casado A, Gomez-Ezeiza J, Santos-Concejero J. Training intensity distribution analysis by race pace vs. physiological approach in world-class middle- and long-distance runners. Eur J Sport Sci. 2021;21:819–26.

Article  PubMed  Google Scholar 

Haugen T, Sandbakk Ø, Seiler S, Tønnessen E. The training characteristics of world-class distance runners: an integration of scientific literature and results-proven practice. Sports Med Open. 2022;8:1–18.

Article  Google Scholar 

Festa L, Tarperi C, Skroce K, La Torre A, Schena F. Effects of different training intensity distribution in recreational runners. Front Sports Act Living. 2019;1: 495162.

Google Scholar 

Muñoz I, Seiler S, Bautista J, España J, Larumbe E, Esteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform. 2014;9:265–72.

Article  PubMed  Google Scholar 

Smyth B, Maunder E, Meyler S, Hunter B, Muniz-Pumares D. Decoupling of internal and external workload during a marathon: an analysis of durability in 82,303 recreational runners. Sports Med. 2022;52(9):2283–95.

Article  PubMed  PubMed Central  Google Scholar 

Smyth B, Muniz-Pumares D. Calculation of critical speed from raw training data in recreational marathon runners. Med Sci Sports Exerc. 2020;52:2637–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vickers AJ, Vertosick EA. An empirical study of race times in recreational endurance runners. BMC Sports Sci Med Rehabil. 2016;8:1–9.

Article  Google Scholar 

Minetti AE, Gaudino P, Seminati E, Cazzola D. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles. J Appl Physiol. 2013;114:498–503.

Article  PubMed  Google Scholar 

Nixon RJ, Kranen SH, Vanhatalo A, Jones AM. Steady-state VO2 above MLSS: evidence that critical speed better represents maximal metabolic steady state in well-trained runners. Eur J Appl Physiol. 2021;121:3133–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39:469–90.

Article  PubMed  Google Scholar 

Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–7.

Article  CAS  PubMed  Google Scholar 

Hunter B, Meyler S, Maunder E, Cox T, Muniz-Pumares D. The relationship between the moderate-heavy boundary and critical speed in running. Int J Sports Physiol Perform. 2024;19:963–72.

Article  PubMed  Google Scholar 

Gini C. Concentration and dependency ratios. Riv Polit Econ. 1997;87:769–89.

Google Scholar 

Casado A, Hanley B, Santos-Concejero J, Ruiz-Pérez LM. World-class long-distance running performances are best predicted by volume of easy runs and deliberate practice of short-interval and tempo runs. J Strength Cond Res. 2021;35:2525–31.

Article  PubMed  Google Scholar 

Sandbakk Ø, Haugen T, Ettema G. The influence of exercise modality on training load management. Int J Sports Physiol Perform. 2021;16:605–8.

Article  PubMed  Google Scholar 

Lemire M, Falbriard M, Aminian K, Pavlik E, Millet GP, Meyer F. Correspondence between values of vertical loading rate and oxygen consumption during inclined running. Sports Med Open. 2022;8:1–7.

Article  Google Scholar 

Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39:1366–73.

Article  PubMed  Google Scholar 

Hellsten Y, Gliemann L. Peripheral limitations for performance: muscle capillarization. Scand J Med Sci Sports. 2024;34: e14442.

Article  PubMed  Google Scholar 

van der Zwaard S, Brocherie F, Jaspers RT. Under the hood: skeletal muscle determinants of endurance performance. Front Sports Act Living. 2021;3: 719434.

Article  PubMed 

留言 (0)

沒有登入
gif