Preparation of Co3O4 Nanoparticles and Studying the Antibacterial Activity on Bacteria Isolated from the Aquatic Environment of the Diyala River

1.    Zabeo A, Keisler JM, Hristozov D, Marcomini A, Linkov I. Value of information analysis for assessing risks and benefits of nanotechnology innovation. Environmental Sciences Europe. 2019;31(1).
2.    Larsson S, Jansson M, Boholm Å. Expert stakeholders’ perception of nanotechnology: risk, benefit, knowledge, and regulation. J Nanopart Res. 2019;21(3).
3.    Arciénaga Morales AA, Nielsen J, Roveris Gomes E, Rasmusen LB, Bacarini H, Thomsen B. Some insights into nanotechnology innovation processes and patterns for advanced materials. Contaduría y Administración. 2018;64(1):74.
4.    Zhang H, Tian Y, Jiang L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today. 2016;11(1):61-81.
5.    Cai P, Leow WR, Wang X, Wu YL, Chen X. Biointegrated Devices: Programmable Nano–Bio Interfaces for Functional Biointegrated Devices (Adv. Mater. 26/2017). Adv Mater. 2017;29(26).
6.    Dettenhofer M, Ondrejovič M, Vásáry V, Kaszycki P, Twardowski T, Stuchlík S, et al. Current state and prospects of biotechnology in Central and Eastern European countries. Part I: Visegrad countries (CZ, H, PL, SK). Crit Rev Biotechnol. 2018;39(1):114-136.
7.    Truong-Dinh Tran T, Ha-Lien Tran P, Tu Nguyen K, Tran V-T. Nano-Precipitation: Preparation and Application in the Field of Pharmacy. Curr Pharm Des. 2016;22(20):2997-3006.
8.    Fedorov AN, Yurkova MS. Molecular Chaperone GroEL – toward a Nano Toolkit in Protein Engineering, Production and Pharmacy. NanoWorld Journal. 2018;04(01).
9.    El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano. 2018;12(11):10636-10664.
10.    Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, et al. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. Journal of Controlled Release. 2019;311-312:170-189.
11.    Pawar S, Shevalkar G, Vavia P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation. Journal of Drug Targeting. 2016;24(8):730-743.
12.    Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of pharmaceutical investigation. 2018;48(1):43-60.
13.    Gamasaee NA, Muhammad HA, Tadayon E, Ale-Ebrahim M, Mirpour M, Sharifi M, et al. The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. Journal of Biomolecular Structure and Dynamics. 2019;38(12):3676-3686.
14.    Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu K. A Semiconducting Polymer Nano‐prodrug for Hypoxia‐Activated Photodynamic Cancer Therapy. Angew Chem Int Ed. 2019;58(18):5920-5924.
15.    Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano. 2017;11(10):9594-9613.
16.    Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci. 2020;144:105213.
17.    Ghafari M, Haghiralsadat F, Khanamani Falahati‐pour S, Zavar Reza J. Development of a novel liposomal nanoparticle formulation of cisplatin to breast cancer therapy. J Cell Biochem. 2020;121(7):3584-3592.
18.    Guo S, Vieweger M, Zhang K, Yin H, Wang H, Li X, et al. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nature communications. 2020;11(1):972-972.
19.    Camcioglu Y, Sener Okur D, Aksaray N, Darendeliler F, Hasanoglu E. Factors affecting physicians’ perception of the overuse of antibiotics. Med Mal Infect. 2020;50(8):652-657.
20.    Boateng J, Catanzano O. Silver and Silver Nanoparticle‐Based Antimicrobial Dressings. Therapeutic Dressings and Wound Healing Applications: Wiley; 2020. p. 157-184.
21.    Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. 2019;14(1):97-110.
22.    Yang X, Wei Q, Shao H, Jiang X. Multivalent Aminosaccharide-Based Gold Nanoparticles as Narrow-Spectrum Antibiotics in Vivo. ACS Applied Materials and Interfaces. 2019;11(8):7725-7730.
23.    Zhou L, Yu K, Lu F, Lan G, Dai F, Shang S, et al. Minimizing antibiotic dosage through in situ formation of gold nanoparticles across antibacterial wound dressings: A facile approach using silk fabric as the base substrate. Journal of Cleaner Production. 2020;243:118604.
24.    R N, S M, S JP, P P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering: C. 2019;96:693-707.
25.    Deng T, Zhao H, Shi M, Qiu Y, Jiang S, Yang X, et al. Photoactivated Trifunctional Platinum Nanobiotics for Precise Synergism of Multiple Antibacterial Modes. Small. 2019;15(46).
26.    Sharifi M, Hosseinali SH, Saboury AA, Szegezdi E, Falahati M. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. Journal of Controlled Release. 2019;299:121-137.
27.    Biswas MC, Tiimob BJ, Abdela W, Jeelani S, Rangari VK. Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application. Food Packaging and Shelf Life. 2019;19:104-113.
28.    Jayakumar A, K.V H, T.S S, Joseph M, Mathew S, G P, et al. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int J Biol Macromol. 2019;136:395-403.
29.    Wu Z, Xu H, Xie W, Wang M, Wang C, Gao C, et al. Study on a novel antibacterial light-cured resin composite containing nano-MgO. Colloids Surf B Biointerfaces. 2020;188:110774.
30.    Soltani S, Akhbari K, White J. Synthesis, crystal structure and antibacterial activity of a homonuclear nickel(II) metal-organic nano supramolecular architecture. Polyhedron. 2020;176:114301.
31.    Amiri S, Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Materials Science and Engineering: C. 2013;33(1):1-8.
32.    Zhu H, Deng J, Yang Y, Li Y, Shi J, Zhao J, et al. Cobalt nanowire-based multifunctional platform for targeted chemo-photothermal synergistic cancer therapy. Colloids Surf B Biointerfaces. 2019;180:401-410.
33.    Zhu H, Deng J, Yang Z, Deng Y, Yang W, Shi X-L, et al. Facile synthesis and characterization of multifunctional cobalt-based nanocomposites for targeted chemo-photothermal synergistic cancer therapy. Composites Part B: Engineering. 2019;178:107521.
34.    Lin W-C, Chuang C-C, Chang C-J, Chiu Y-H, Tang C-M. The Effect of Electrode Topography on the Magnetic Properties and MRI Application of Electrochemically-Deposited, Synthesized, Cobalt-Substituted Hydroxyapatite. Nanomaterials (Basel, Switzerland). 2019;9(2):200.
35.    Lin WC, Chuang CC, Yao C, Tang CM. Effect of Cobalt Precursors on Cobalt-Hydroxyapatite Used in Bone Regeneration and MRI. J Dent Res. 2020;99(3):277-284.
36.    Wang G, Ma Y, Wei Z, Qi M. Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem Eng J. 2016;289:150-160.
37.    Dey C, Baishya K, Ghosh A, Goswami MM, Ghosh A, Mandal K. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J Magn Magn Mater. 2017;427:168-174.
38.    Anbouhi TS, Esfidvajani EM, Nemati F, Haghighat S, Sari S, Attar F, et al. Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. International journal of nanomedicine. 2018;14:243-256.
39.    Behzadi E, Sarsharzadeh R, Nouri M, Attar F, Akhtari K, Shahpasand K, et al. Albumin binding and anticancer effect of magnesium oxide nanoparticles. International journal of nanomedicine. 2018;14:257-270.
40.    Sohrabi MJ, Dehpour A-R, Attar F, Hasan A, Mohammad-Sadeghi N, Meratan AA, et al. Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. Int J Pharm. 2019;572:118824.
41.    Esfandfar P, Falahati M, Saboury A. Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure and Dynamics. 2016;34(9):1962-1968.
42.    Hassanian M, Aryapour H, Goudarzi A, Javan MB. Are zinc oxide nanoparticles safe? A structural study on human serum albumin using in vitro and in silico methods. Journal of Biomolecular Structure and Dynamics. 2020;39(1):330-335.
43.    Shaklai N, Garlick RL, Bunn HF. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem. 1984;259(6):3812-3817.
44.    Aghili Z, Taheri S, Zeinabad HA, Pishkar L, Saboury AA, Rahimi A, et al. Investigating the Interaction of Fe Nanoparticles with Lysozyme by Biophysical and Molecular Docking Studies. PLoS One. 2016;11(10):e0164878-e0164878.
45.    Zeinabad HA, Kachooei E, Saboury AA, Kostova I, Attar F, Vaezzadeh M, et al. Thermodynamic and conformational changes of protein toward interaction with nanoparticles: a spectroscopic overview. RSC Advances. 2016;6(107):105903-105919.
46.    Hussain A, Begum A, Rahman A. Electrical and optical properties of nanocrystalline lead sulphide thin films prepared by chemical bath deposition. Indian Journal of Physics. 2012;86(8):697-701.

留言 (0)

沒有登入
gif