The role of circRNAs in resistance to doxorubicin

Bray F, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2024;74(3):229–63.

Article  Google Scholar 

Liu B, et al. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduct Target Therap. 2024;9(1):175.

Article  Google Scholar 

Khan SU, et al. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Communicati Signal. 2024;22(1):109.

Article  Google Scholar 

Hulst MB, et al. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep. 2022;39(4):814–41.

Article  CAS  PubMed  Google Scholar 

Kristensen LS, et al. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206.

Article  CAS  PubMed  Google Scholar 

Verduci L, et al. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu KP, et al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 2019;27(3):518–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang XZ, et al. Construction of a competing endogenous RNA network and identification of potential regulatory axes in gastric cancer chemoresistance. Pathol Res Pract. 2022;234: 153904.

Article  CAS  PubMed  Google Scholar 

Arcamone F, et al. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnol Bioeng. 1969;11(6):1101–10.

Article  CAS  PubMed  Google Scholar 

Kciuk M, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):659.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dallavalle S, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updates. 2020;50: 100682.

Article  Google Scholar 

Thorn CF, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9(5):338–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minotti G, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229.

Article  CAS  PubMed  Google Scholar 

Mattioli R, et al. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming. Mol Aspects Med. 2023;93:101205.

Article  CAS  PubMed  Google Scholar 

Foglesong PD, Reckord C, Swink S. Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol. 1992;30(2):123–5.

Article  CAS  PubMed  Google Scholar 

Pérez-Arnaiz C, et al. New insights into the mechanism of the DNA/doxorubicin interaction. J Phys Chem B. 2014;118(5):1288–95.

Article  PubMed  Google Scholar 

Martins-Teixeira MB, Carvalho I. Antitumour anthracyclines: progress and perspectives. ChemMedChem. 2020;15(11):933–48.

Article  CAS  PubMed  Google Scholar 

Forrest RA, et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol. 2012;83(12):1602–12.

Article  CAS  PubMed  Google Scholar 

Tadokoro T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5(9):e132747.

Article  PubMed  PubMed Central  Google Scholar 

Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wenningmann N, et al. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219–32.

Article  CAS  PubMed  Google Scholar 

Al-Malky HS, Al Harthi SE, Osman AM. Major obstacles to doxorubicin therapy: cardiotoxicity and drug resistance. J Oncol Pharm Pract. 2020;26(2):434–44.

Article  PubMed  Google Scholar 

Mansoori B, et al. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amawi H, et al. ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol. 2019;1141:549–80.

Article  CAS  PubMed  Google Scholar 

Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011;3(4):279–96.

Article  CAS  PubMed  Google Scholar 

Neophytou CM, et al. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers (Basel). 2021;13(17)4363.

Article  CAS  PubMed  Google Scholar 

Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taheri M, et al. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target. 2022;30(1):1–21.

Article  CAS  PubMed  Google Scholar 

Liu X, et al. Circular RNA: an emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 2022;348:84–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obi P, Chen YG. The design and synthesis of circular RNAs. Methods. 2021;196:85–103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanger HL, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kos A, et al. The hepatitis delta (delta) virus possesses a circular RNA. Nature. 1986;323(6088):558–60.

Article 

留言 (0)

沒有登入
gif